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REVIEW ARTICLE 
Atomic Transport in Liquids 

T. GASKELL 

Depurtnient qf Phjssics, The Universit?>, Sliejield S3 7 R  

U .  BALUCANI and R. VALLAURI 

IK. 

lstituto di Elettronica Quuntisticu del Consiglio NuZionale delle 
Ricerche, I-SO127 Floretice, Italjv. 
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The topics discussed are: 

temperature and density, the emphasis being on self-diffusion and shear viscosity. 

Green Kuho integrands. 

i )  The representation of experimental atomic transport coefficient data in simple liquids with respect to 

i i )  The theoretical framework and the derivation of expressions for the coefficients in terms of 

i i i )  Computer simulation data for the rigid sphere, Lennard-Jones and liquid metal-like systems. 
iv )  Rigid sphere dynamics and the rigid sphere fluid as a reference system for atomic transport in liquids. 
v )  Mode-coupling theory and interrelationships between coefficients 

We conclude that along the saturated vapour pressure curve the temperature dependence of the shear 
viscosity coefficient, q. for liquid metals is not the same as that of its counterpart in the inert gas liquids, 
according to the available experimental data. In addition, for the data examined a power law in T is a more 
appropriate description than an Arrhenius expression. The situation is more confused for the self-diffusion 
coefficient. D. For the saturated liquid, a linear dependence can be claimed for Ar and some liquid metal 
data, but the evidence IS not conclusive. To develop a coherent and comprehensive understanding of the 
transport mechanism more extensive diffusion data is essential. 

We suggest, also, a more systematic approach to the determination of transport coefficients in computer 
simulation studies, particularly for liquid metal-like systems. On the theoretical front, in spite of an 
established framework. realistic calculations of atomic transport properties of liquids (on the scale required) 
are rare. Mode-coupling theory. we believe. offers the opportunity of progress here. We comment, finally, on 
interrelationships betweei; coefficients and give a derivation of the Stokes-Einstein relation between D and 
q from a microscopic viewpoint. 

KEY WORDS: Transport coefficients. Green-Kubo integrands, computer simulation, rigid sphere 
reference system. mode-coupling theory. 

1 INTRODUCTION 

We confine ourselves to a review of the atomic transport properties of classical 
monatomic liquids, and discuss the current experimental and theoretical situation in 
this 'simplest' area of liquid state physics. 
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194 T. GASKELL, U .  BALUCANI A N D  R .  VALLAURI 

There now exist systematic and reliable methods of calculating the structure and 
thermodynamic properties of simple liquids in terms of a given interatomic potential’. 
This is not the case for the transport properties. I t  is true that our understanding of the 
microdynamic behaviour of liquids has greatly increased over the last three decades, 
due to the development of (a) inelastic neutron scattering experiments, (b) computer 
simulation techniques for the study of models of liquids and (c) an appropriate 
theoretical framework. However, the translation of this understanding of the dynam- 
ics into confident predictions of, say, the temperature dependence of the shear 
viscosity, or diffusion, coefficient has still to be achieved. On the experimental side, a 
shortcoming is that data, in some important cases, tends to be available only for 
rather limited ranges of temperature. This is particularly so for the self-diffusion 
coefficient, due to the practical difficulties involved in the measurements. The result is 
that i t  is possible to obtain equally good descriptions of the temperature dependence 
of the data with (different) power laws, or, sometimes, an Arrhenius-type expression. 
The experimental situation for the shear viscosity is much better and we are able to 
reach more clear-cut conclusions. 

We begin the review by summarizing the experimental methods which are used to 
measure self-diffusion, thermal conductivity and viscosity coefficients. The problems 
involved in the representation of the experimental data with respect to temperature 
and density are then discussed. Next, the theoretical framework is presented. The 
starting point is a generalized hydrodynamic point of view, involving the microscopic 
“conserved” variables and the derivation of a generalized Langevin equation. By this 
means, expressions for the transport coefficients are derived in terms of Green-Kubo 
integrands. In Section 4 we review computer simulation experiments, including the 
more recent non-equilibrium molecular dynamics techniques which has developed 
into a powerful means of studying transport properties. Applications of the theoretical 
framework to a rigid sphere fluid are then reported. The consequences of the 
instantaneous nature of the interaction, and the relevance of this model for our 
understanding of liquids is investigated. As with the thermodynamics, it is possible to 
make some progress by relating the transport properties of liquids to  those of a rigid 
sphere reference system whose properties are assumed known. Despite their intrinsic 
importance we do not discuss kinetic theory developments nor their application to 
rigid sphere dynamics. Computer simulation data remains the basic reference system 
information for this type of approach, which can be useful in correlating experimental 
data, or predicting the values of transport coefficients. 

Finally, mode-coupling methods, which attempt to describe microscopic dynamics 
in realistic model systems, are briefly considered. Simple applications are presented, 
leading to the derivation of expressions for the velocity and stress autocorrelation 
functions. Almost by definition, this approach describes the behaviour of a time- 
correlation function in terms of others, and can sometimes give insight into interrela- 
tionships between transport coefficients. By introducing the concept of a microscopic 
velocity field, an improvement in the mode-coupling result for the velocity autocorre- 
lation function is first obtained. From this, we give a derivation of the Stokes-Einstein 
equation connecting the self-diffusion and the shear viscosity coefficients, and achieve 
some insight into the validity of this relationship at a microscopic level. 
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ATOMIC TRANSPORT IN LIQUIDS 195 

2 EXPERIMENTAL DETERMINATION OF ATOMIC TRANSPORT 
COEFFICIENTS 

We consider, first, particle and heat diffusion processes. The diffusion of one fluid into 
another or the transfer of heat from one point in a fluid to another takes place as a 
result of concentration and temperature gradients respectively. The particle or heat 
flux, J ,  per unit area, per unit time, across a plane perpendicular to the flow is found 
empirically to have a linear dependence on the respective gradient. Hence we can write 

J i  = - DVc, (for particle diffusion, Fick’s law) (2.1 ) 

J ,  = - j.VT (for heat transfer, Fourier’s law) (2.2) 

and 

In the first equation c i  is the concentration per unit volume of component i and D the 
inter-diffusion coefficient. In the second, T refers to the temperature and ,i the thermal 
conductivity. 

Continuity equations can be derived by considering the flux through an infinitesi- 
mal volume element of the fluid. These are readily obtained as 

(2.3) 

and 

ST 
6t 

nmCp ~ + V . J ,  = 0 (2.4) 

It is convenient to use the latter equations to eliminate the flux J from Eqs (2.1) and 
(2.2), giving 

and 

- = ( A/nmCp)V T (2 .6)  

Equations (2.1), (2.2), (2.5) and (2.6) are of fundamental importance in the interpreta- 
tion of experimental work on the atomic transport coefficients associated with 
diffusion and thermal conductivity. 

dT 
dt  

2.1 Selj-DifSusion CoelfJicient 

We describe one practical application of Eq. (2.5) and mention others. To  measure a 
self-diffusion coefficient, i t  is necessary to ‘mark’ or ‘label’ some of the particles, 
without changing their diffusive properties, and to identify the ‘inter-diffusion’ 
coefficient in (2.5) with the ‘self-diffusion’ coefficient. This labelling can be achieved, 
for example, by radioactive isotopic substitution. [The introduction of isotopes of a 
different mass means that the self-diffusion coefficient of the ‘normal’ liquid is not 
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196 T. GASKELL, U. BALUCANI A N D  R .  VALLAURI 

strictly being measured. However, measurement errors are expected to exceed effects 
associated with isotopic mass differences-with the notable exception of liquid 
lithium2.] Such a technique is used in the capillary-reservoir experiment3, which has 
been responsible for a great deal of diffusion data on liquid metals. In this method, a 
narrow capillary, one end closed, is filled with the labelled species and lowered into a 
reservoir of inactive liquid. Diffusion of the labelled atoms takes place and after an 
appropriate time their concentration in the capillary is measured. If co is the initial 
concentration of the marked atoms in the capillary and that in the reservoir zero, the 
solution of Eq. (2.5) for this essentially one dimensional case is4 

m 

c(z, t) /c,  = (4/n) ( -  1)”/(2n + 1) exp[ -(2n + 1)2n2Dt/412] cosC(2n + l)nz/21] 
n = O  

(2.7) 
where c(z ,  t )  is the concentration at height z above the bottom of the capillary, length I, 
after time t .  The average concentration along the capillary is measured in practice, 
which, from Eq. (2.7) is given by 

C/co = (8/n2) ( -  1)”/(2n + 1)2 exp[ -(2n + 1)2n2Dt/412] (2.8) 

When Dt/412 is large enough, convergence of the series is rapid, and only the first term 
need be considered, so that 

f / c o  = (8/n2) exp[ - n2Dt/412] 

n = O  

or 

ln(C/co) = ( -n2Dt/412) + 1n(8/n2) (2.9) 
Plotting ln(C/co) versus time, t ,  at which the capillary is examined should produce a 
linear graph from which D is determined from the slope. If convergence is not rapid 
enough, numerical fitting techniques may be used instead to obtain a value for D5. 

There are a number of potential sources of error in this method the most serious of 
which arises from the accumulation of solute atoms in the neighbourhood of the 
capillary exit. This would invalidate the boundary condition on which Eq. (2.7) is 
based, namely, that the concentration of labelled atoms at  this point is zero. A 
correction for this effect can be attempted by using an increased effective capillary 
length I + Al. Alternatively, the solution can be stirred to sweep away the diffusing 
tracer atoms as they emerge from the capillary. However, the choice of stirring speed is 
very important. I t  must be slow enough to prevent the development of turbulence 
which drags the fluid from the capillary6. Other, similar techniques are: 

i) The long capillary method, in which half of the capillary is filled with isotopically 
enriched liquid and the other half with ordinary liquid. This technique has proved 
useful in high pressure studies of diffusion’. It has also been developed to allow 
continuous monitoring of the tracer atoms and applied to a range of liquid metals*. 

ii) The shear cell method, where the cell consists of several discs, which have a 
common axis of rotation, and which contain holes. These may be aligned to form a 
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ATOMIC TRANSPORT IN LIQUIDS 197 

capillary, or mis-aligned to break it into segments after a diffusion experiment. This 
would start with a thin layer of solute in the middle of the capillary. If A is the initial 
concentration of solute per unit area, the appropriate solution of Eq. (2.5) is 

(2.10) 
which gives the concentration of the solute as i t  diffuses in both directions. Any 
dissymmetry in the two profiles, due to convection, is easily detectable. The concentra- 
tion profiles of the solidified segments are measured, as in other experiments, by 
chemical or radioactive analysis and D determined by application of Eq. (2.10). 

I t  should be stressed that the capillary technique is subject to the troublesome 
difficulties associated with convection effects. Rigney' has given a critical discussion of 
these for experimental work on atomic transport properties of liquid metals. More 
recently, Persson et a/." have reviewed this important topic and considered the 
development of new techniques to minimise the problems. 

Nuclear magnetic resonance methods provide another source of information about 
diffusion in liquids. They involve either measurements of the spin lattice relaxation 
time or use of a spin-echo technique6. The former gives only relative values of the 
self-diffusion coefficient and requires a theory of the relaxation process. The latter, 
however, provides absolute values for D and has the advantage that no assumptions 
concerning the mechanism of the diffusion process are needed. I t  involves measuring 
that part of the spin relaxation process due to the diffusion of spin orientated nuclei in 
a magnetic field gradient, after perturbation of the equilibrium distribution of nuclear 
magnetic moments by radio frequency energy pulses. For the simple liquids of interest 
here the accuracy is generally poorer than for the tracer methods, and liquid metals 
present special difficulties'. However, some elements have no convenient radioactive 
tracer. These include lithium, and the value for D quoted in Table 5.2 was determined 
by NMR". I t  refers to the diffusion of 'Li in natural Li which contains 92.570,/, 'Li. 

In principle, D can also be determined from experimental data of the incoherent 
component of the inelastic neutron scattering cross section. Larsson" has quite 
recently reviewed the possibilities and limitations of this type of approach. 

2.2 Therninl Cotiductiritj- 

In contrast to the concentration measurements of diffusion coefficients discussed 
above, a steady state technique using Eq. (2.2) is considered preferable for the 
determination of the thermal conductivity of a liquid. Amongst other reasons, the 
calculations required in nonsteady state methods are either very tedious or inaccurate, 
although this type of approach has been used13. 

The essentials of the method involve placing a layer of the liquid under investiga- 
tion in a gap between either parallel plates or the annular gap between vertical 
concentric cylinders. Both types of geometry have been used14.' ', although the latter 
has certain practical advantages in the reduction of heat losses. I t  has been claimed, 
also, that for high pressure work particularly the restrictions on the geometry, 
imposed by the necessity to fit the cell into a high pressure vessel, make the cylinder 
method preferableI6. A heater coil runs along the central axis of the inner cylinder, 
with a resistance calibrated as a function of temperature, and a temperature gradient, 

c(z, t )  = ~ ( 4 n D t ) -  '1' exp( -z2/4Dt) 
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198 T. GASKELL, U. BALUCANl A N D  R.  VALLAURI 

VT, maintained across the inner and outer cylinders. The heat energy, generated at the 
known rate, Q, is conducted radially outwards through the liquid layer. The 
application of Eq. (2.2) leads to the result that 

,I = Q ln(r2/r,)/(2nLVT) (2.11) 

In  this equation L is the length of each cylinder and r l  and r2 (r2 > r l )  the radii. 
Corrections to this simple expression are required in practiceI6. 

2.3 Viscosilj? 

a)  Shear viscosity Once again, there is choice between a steady and a non-steady 
state method. The first category includes capillary flow, falling ball or cylinder, and 
rotating cylinder techniques. The capillary flow method is very well known and 
conveniently used at room temperature and atmospheric pressure. At high pressures 
there are technical problems where visual observation is required. At low tempera- 
tures the necessity of pumping the liquid back to the viscometer head creates 
difficulties, although these have been overcome in different The pressure 
dependence of the shear viscosity coefficient is probably most easily determined by a 
damped oscillator technique, which falls into the second category. A form of 
oscillating disc vi~cometer '~,  vibrating wire viscometer2' or torsionally oscillating 
crystal viscometer" have been applied. A great deal of data on the inert gas liquids 
have been obtained in this way2', although it has been pointed out that the results 
from the different sources do not always 

For liquid metals and their alloys, where thermodynamic conditions are generally 
more extreme and the liquids more reactive, a form of oscillating cup viscometer has 
had wide application. A right-circular cylindrical cup containing the liquid is 
suspended by a torsion fibre so that an oscillating pendulum is formed. A sealed cup 
prevents vapourization and reactions of the liquid metals with atmospheric gases. As 
with the other non-steady state methods, the theory of the cup viscometer involves 
both the equation of motion of a Newtonian fluid and that of the cup. These are 
respectively 

'. 

v =  - V p - V . a + n m g  (2.12) 
I 

and 

d28 
d t2  

I - = L  (2.13) 

In Eq. (2.12), v is the velocity of the fluid, p the pressure, a the stress tensor, and g the 
gravitational acceleration; in (2.13) I is the moment of inertia of the cup and L the 
total torque on it. The drag of the liquid within the cup produces a contribution to the 
torque. This is expressed in terms of a component of the stress tensor and hence is 
proportional to the shear viscosity coefficient, q, and the velocity gradient of the fluid. 
Details of a treatment of these equations and their application to the experimental 
determination of viscosity are given, for example, by Wittenberg et ~ 1 ~ ~ .  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
4
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



ATOMIC TRANSPORT IN LIQUIDS 199 

A comprehensive review of this method, along with alternative experimental 
techniques which have been used for liquid metals, has recently been published by 
Shpil’rain et ~ 1 . ’ ~ .  The reader is referred to this reference for a critical discussion, and 
for the tabulation of recommended values of the shear viscosity of the liquid alkali 
metals over an extensive range of tempo ,rature. 

b) Bulk viscosity Direct, independent, measurement of the bulk viscosity coefficient, 
q B ,  appears not to be possible. However, the bulk viscosity, in combination with the 
shear viscosity and thermal conductivity, contributes to the attenuation of sound 
wave energy in a liquid. Experimental investigation of Yound attenuation therefore 
allows an estimate of q B  to be made, provided that q ,  i and the specific heats C ,  and 
Cv for the liquid are already known. 

The relevant theoretical results can be obtained from the theory of the density 
fluctuation spectrum outlined in Section 3. The half-width, Am, of the Brillouin peaks 
(which represent propagating sound waves) is given by Eqs (3.32) and (3.37) which are 
consistent with a hydrodynamic treatment of the liquid. For a given wavevec 
result is 

A u  = 5[(4q/3 + q,,) )ir’)i -t (i/nmC,)(y - I)]$ (2.14) 

with w = c,y. 
In these equations c, is the sound velocity, C, the specific heat per unit mass and y 

the specific heat ratio. In the hydrodynamic regime, where the wavelength of the 
propagating modes S the interparticle separation, light scattering experiments (where 
possible) are an appropriate technique to investigate the dynamical behaviour of the 
density fluctuations. In principle, this type of investigation is one means of obtaining a 
value for yls. 

Fleury and Boon24 have investigated the Brillouin spectrum for 5145 A laser light 
scattered from liquid Ar at  T = 85 K.  The observed sound speed, c, = 850 4 ms-’ 
is close to the low-frequency value measured acoustically, c, = 853 ms-’. Unfortu- 
nately, numerical analysis of the line shapes, and an estimate of the bulk viscosity 
coefficient, was not carried out. Fluctuations in the instrumental width caused by the 
wandering of the single mode laser frequency, made such a process unreliable. 

The alternative approach is to measure the sound attenuation coefficient, a, when 
ultrasonic waves are transmitted through the liquid. Using the two expressions in 
Eq. (2.14), i t  is readily seen that this is given by 

ct = (to2/2c;)[(4q/3 + qB) /nm + ( i / nmCp) (y  - l)] (2.15) 

The extra factor of c, arises from conversion to attenuation per unit length. I t  follows 
that 

(2.16) 

and the accuracy of the result depends on firm knowledge of thermodynamic and 
transport properties of the liquid under investigation. Naugle et ul.” have measured 
the attenuation coefficient in liquid Ar at frequencies from 30 to 70 Mc s - ’  using a 
pulse-echo technique. They reported quite extensive results for qB with an estimated 
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200 T. GASKELL. U. BALUCANI AND R.  VALLAURI 

error of k 25 %. Calculations of the required specific heat ratio from equation of state 
data was considered to be a significant source of error. Ultrasonic attenuation in 
liquid metals has also been measured26, and the experimental techniques recently 
reviewed by Beyer2’. There is an additional problem in metals, following from the fact 
that in Eq. (2.15) the conductivity component dominates the viscosity contribution to 
rx. Typically, it represents about 70-80 % of the total. Because of this, there are obvious 
difficulties in an accurate determination of q B  by means of Eq. (2.16). However, data 
for a number of metals are listed by Sharma2*. 

2.4 Representation of Experimental Data 

Self-diffusion coefficients are difficult to measure accurately and the most extensive 
and reliable atomic transport data available in simple liquids is of the shear viscosity. 
I t  is appropriate, therefore to consider these data first. 

One of the most widely used concepts in the representation of experimental 
transport coefficient data for viscosity (and diffusion) is that of an “activation 
energy”. This followed from the observation that the temperature dependence of the 
viscosity of liquids could be fitted by the formula, q = qOeEUlkT, over the (rather 
limited) range of thermodynamic conditions usually i n ~ e s t i g a t e d ~ ~ .  The parameters 
qo and E,. are temperature independent, and by analogy with the Arrhenius equation 
for the chemical rate constants, E ,  is referred to as an activation energy (for viscous 
flow). There is now some extensive shear viscosity data available for the liquid alkali 
metalsz3 to examine the concept further. Although Arrhenius plots can still be a useful 
practical way to represent the temperature dependence of over a restricted range of 
temperatures (in liquid metals, from the melting point to about twice the melting 
temperature), as Figure 2.1 shows the assumption of an Arrhenius law is not 
confirmed over a wider temperature range. However, if this type of expression is made 
more flexible by using a temperature-dependent prefactor, it can be used to fit the 
experimental data, and extrapolate the results to higher temperatures. This has been 
done for all the alkali data reported in Ref. 23. The equation takes the form 

q = T - B  exp[ - A + C / T ]  
or 

In(q) = - A  - B In( T )  + C/T (2.17) 
The parameters A, B and C are chosen by means of a least squares fitting procedure. 
For temperatures up to z 1500 K an accuracy of better than 5 % is claimed. Up to 
2000 K it is of the order of 10%. 

Using the data, we have observed that for the alkali metals the fluidity, q -  ’, has a 
simpler representation, namely an approximate (and so far unexplained) linear 
dependence on ./T, as demonstrated in Figure 2.2. The temperature range extends 
from near the melting point to temperatures close to 2000 K, and we assume that the 
experimental data is for thermodynamic states along the saturated vapour-pressure 
curve. I t  is interesting to compare this with the viscous behaviour of saturated liquid 
argon. Haynes2’ has determined the viscosity from 85 K to 150 K, and over this range 
q changes by an order of magnitude. In contrast to the alkali metals, the fluidity does 
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I I I I 

0.0004 0~0012 0~0020 0,0028 

Figure 2.1 
Shpil’rain P! ~ 1 . ~ ~ .  

Plot of In[q(rnP)] against 1.’T for liquid rubidium at saturated vapour pressure. Data from 

not vary linearly with JT. Over a temperature range from 8 5 K - 1 2 0 K  log(q) is 
approximately linearly-dependent on T -  ’. Taborek et have investigated the 
temperature dependence of the viscosity of a number of liquids in terms of a power- 
law behaviour, although their primary interest was in the supercooled region of the 
phase diagram. They suggest that 11- l”  versus T shows approximately linear 
behaviour for some simple liquids, including argon. We demonstrate the range of 
applicability in Figure 2.3, using Haynes’ data. For the limited temperature range just 
referred to, the linearity is more striking than for the Arrhenius plot. When argon data 
is examined more carefully they find that the form 

11 = A(T/TO - ly (2.18) 

describes the behaviour more precisely (if p = - 2 this equation is consistent with our 
previous statement). In practice the value for p depends on the liquid, but fluctuates 
about -2 .  The result for argon is shown in Figure 2.3 when we use the parameter 
values A = 8.31 mP, p = - 1.82 and To = 30 K .  Unfortunately, the temperature range 
is too small in this case to appreciate properly the quality of the fit. This type of 
analysis is not appropriate for the liquid alkalis with a power law exponent z - 2, a 
conclusion which is consistent with the investigations of Taborek et al. on the other 
liquid metals. 

The transport coefficients of a rigid sphere fluid are determined entirely by the 
packing fraction. For liquids, one expects the transport properties to depend primarily 
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1 . 4  

1.0 
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0.5 

0 
K O  
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0 
0 Rb 

0 O - /  

0 0 7  

I I I 1 
16 2 4  32 40 

0.0 ‘ 
Figure 2.2 
from Shpil’rain C I  a/.’-’ 

Variation of fluidity with T”’ for five liquid alkali metals at saturated vapour pressure. Data 

on the density. The density dependence too provides evidence against the idea of 
introducing an activation energy into the interpretation of viscosity data-by the 
observation that the fluidity of some simple liquids is a linear function of molar 
volume. Using this free volume concept, due to Batschinskii”, enables one to write 

‘ 1 - l  = B(V - V, ) /Vo  (2.18) 

where V,, the volume at which the fluidity becomes zero, may be regarded as the 
volume of the solid at the melting point. If true, this implies that there is no energy 
barrier to the movement of molecules but that the latter is determined by the available 
free volume only. Hildebrand3’ discusses this equation at some length, and gives 
examples of its applicability. Van Loef3’ has reported an investigation of the inert gas 
liquids (with the exception of 4He). He finds an approximate linear relationship 
between ‘ 1 - l  and V over a wide density range and for temperatures from the triple 
point to the critical temperature. However, the spread of data points at  the higher end 
of the density range indicates that, along an isochore, the shear viscosity decreases 
with increasing temperature although the dependence is substantially less than f i  
The data is presented in reduced form, the scales of length and temperature being 
those associated with a 6-  12 Lennard-Jones potential, namely 0 and &/kg respectively. 
From the results van Loef concludes that a corresponding states principle is obeyed 
for this linear relationship. Further study of Eq. (2.18), along isotherms, has been 
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203 ATOMIC TRANSPORT IN LIQUIDS 

I 

Figure 2.3 Square root of fluidity as a function of temperature for liquid argon along the saturated vapour 
pressure line. The squares refer to experimental data from Haynes”, and the line is obtained from Eq. 
(2.18). 

made quite recently using data for argon at high densities”. However, for the liquid 
alkali metals, using the values of shear viscosity and density listed by Shpil’rain er a/., 

we find that J T / q ,  rather than the fluidity, shows an approximate linear relationship 
with K’ ,  although over a limited temperature range only (of approximately two to 
three times the melting temperature). This has been noted before34, and is consistent 
with the hard sphere model for the transport properties of simple liquids considered in 
Section 5. 

Within the Arrhenius concept, the equation D = DOe-ED’keT,  has been proposed for 
the temperature dependence of diffusion coefficients. This type of expression is 
supported by theoretical arguments based on the quasi-lattice model of a liquid, and is 
apparently given some credence from an examination of self-diffusion data in the 
liquid alkali metals35. Once again, the temperature range is rather limited. 
Nachtrieb3’ has carefully examined the way in which D varies with temperature for 
the liquid metals indium (with two different sets of data), mercury and tin, using what 
he considered to be the best data available. He investigated log D versus T - ’, D versus 
T, D versus JT and D versus T 2 .  Unfortunately, there are no universal conclusions to 
be drawn from the results. For tin and one set of indium data, the first two plots gave 
equally good straight lines. No linearity could be claimed for any of the plots with the 
remaining data. 
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t- 

0 
\ 

0.012 

The observation that the fluidity of the alkali metals depends linearly on f i  has 
implications for the temperature dependence of D. The apparent applicability in 
simple liquids of the Stokes-Einstein relation, D = kBT/4nqR ( R  being an effective 
particle radius), suggests that D/T should vary linearly with JT. This of course 
assumes that R is independent of temperature, which will be a reasonable assumption 
over a limited temperature range. We have tested this prediction for liquid Na, with 
data at constant pressure3’. The result is shown in Figure 2.4. The spread of the data 
points at nearly the same temperature gives an idea of the accuracy of the measure- 
ments. It is just as convincing as an Arrhenius plot. Unfortunately, because of the 
limited range of temperature a linear dependence on T cannot be ruled out either. 
These alternatives were used to examine data obtained at constant volume by Ozelton 
and Swalin’. In this case a linear plot is not apparent for any of them. 

For the inert gas liquids Ar, Kr and Xe, and also for CH,, diffusion coefficient data 
has been approximately fitted by the Arrhenius form38. This was done along a number 
of isobars, and for argon, along the saturated vapour pressure curve as well. Here, the 
pressure changed from 1.32 atm. to 47 atm. We have compared the Arrhenius fit along 
the vapour pressure line with the simpler one of D versus T, and find that the latter 
displays a more convincing linear behaviour. The result is shown in Figure 2.5. For 
the Arrhenius plot the points show a distinct curvature which is hard to reconcile with 
a random scatter within the error bars. 
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Figure 2.4 Variation of the self-diffusion coefficient with temperature for liquid sodium. The figure shows 
D / T  versus T”’. the crosses denoting data at constant pressure3’, and the squares refer to constant volume 
measurements’, 
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ATOMIC TRANSPORT IN LIQUIDS 205 

Figure 2.5 Self-diffusion coefficient of liquid argon as a function of temperature along the saturated 
vapour pressure curve. Experimental data points from Nagizadeh and Rice3’, except for the lowest 
ternperat~re”.~~,  where we take D = 1.53 x lo-’ ern' 5- I .  The straight line is from a least squares fit to the 
data of Nagizadeh and Rice. 

Tyrell and Harris6 have quite recently reviewed the topic and discussed the 
conceptual problems involved in the idea of diffusion occurring as a result of atoms 
jumping into vacancies, with the process requiring an activation energy. They also 
suggest that there is now some fairly direct experimental evidence that diffusion in 
liquids does not occur by individual molecular “leaps”, although the liquid involved 
in the investigation cannot be classified as “simple” in the context of this review. The 
experiment, by Ruby et d 4 1 ,  concerned the diffusion of the 55Fe isotope in a 
supercooled solution of an iron salt in a glass-forming liquid. Using a Mossbauer 
technique to measure the broadening of the line shape of the resonant prays, due to 
atomic motion, and assuming a jump model for diffusion, information on the average 
distance between jumps could be obtained. In a quasi-lattice interpretation of the 
diffusive mechanism, the jump distance involved would be expected to be of the order 
of a molecular diameter. The experiment showed that the average individual 
movements must be very much smaller than that, and this was interpreted as evidence 
in support of diffusion proceeding by a continuous series of small displacements 
rather than jumps. Nevertheless, the experiment has a rather puzzling feature. I t  has to 
be pointed out that the observed temperature dependence of the isotope diffusion 
coefficient could be fitted reasonably well by an Arrenius law, ouer a range where D 
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206 T. GASKELL. U. BALUCANI A N D  R. VALLAURI 

changed by three orders of magnitude. By itself, this would tend to suggest an activated 
diffusion process in the supercooled liquid. However, an equally good (and probably 
better) power law fit, of the type discussed by Taborek et al., cannot be ruled out. 

Quite recently, a systematic investigation of the thermal conductivity data for the 
inert gas liquids has been reported by van L ~ e f ~ ~ .  The results are expressed in terms of 
the relationship of the thermal resistivity ( 2 -  ') with molar volume. Again, the 
variables are expressed in reduced form and he finds that 1-' varies linearly with 
molar volume. The temperature range extends from the triple to the critical point and, 
as with the fluidity, a corresponding states principle is found to operate. Two further 
results emerge: (i) in the liquid, 1 varies only slightly with temperature along an 
isochore and (ii) the thermal resistivity increases by a factor of 2 2  on increasing the 
volume, from the triple point value, by about 30 %. In the above reference the 
investigation of viscosity and thermal conductivity is extended to diatomic liquids and 
to mixtures, although this is not of principle concern here. 

In the next section we review the framework of atomic transport theory, and derive 
exact expressions for the transport coefficients in terms of Green-Kubo integrands. 

3 GENERAL THEORETICAL FRAMEWORK 

In a discussion of the transport properties of a one-component liquid the fundamental 
microscopic dynamical variables are the single particle and number density fluctua- 
tions, n,(k, t )  and n(k, t )  respectively, the momentum density fluctuations, P(k, I), and 
the energy density fluctuations, E(k, t). All are conserved as k -+ 0 and are defined as 

ns(k, t )  = exp[ik.rl(t)] and n(k, t )  = Cexp[ik.rj(t)], 
j 

P(k, t )  = mvj(t) exp[ik. rj(t)] 
j 

and 

E(k, t )  = 1 k(m$(t) + cp(r,.,(t)} exp[ik.rj(t)] 
i j .=j  

= C E j ( t )  exp[ik. r,(t)] (3.1) 
i 

In the following theory it will be convenient to define fluctuation variables act) = 
A ( t )  - ( A ( [ ) ) .  Note that (n,(k, t)) = d,,,, (n(k, t)) = N6, , , ,  (P(k, t ) )  = 0 and 
(E(k, t ) )  = (H)d,,,, where H is the Hamiltonian of the system. Choosing k in the z 
direction, the equations of motion are 

n,(k, t )  = iku;(t)n,(k, t) ,  ri(k, t )  = (ik/rn)P'(k, t), 
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ATOMIC TRANSPORT IN LIQUIDS 207 

with 

P'(k, t )  = ik {rn[~;(t)]' - [ z j , j ( t ) / r j , j ( t ) ] 2 ~ k ( r j , j ( t ) ) )  exp[ikzj(t)] 
j j ' #  j 

P"(k, r )  = ik 1 {rnc;(t)ujx(t) - 1 [ ~ ~ , ~ ~ r ) x ~ . ~ ( t ) ) / r ~ , ~ ( t ) ] ~ ~ ( r ~ , , ~ t ) ) }  exp[ikzj(t)] 
j j ' t j  

P y ( k ,  t )  as P"(k, t )  with x -+ y ,  
and 

E(k, t )  = ik 1 { E j ( t ) u ; ( r )  
j 

where Q ( r )  = rcp'(r)( 1 - exp[ - ikz])(ikz)- with q ( r )  the pair-potential energy. The 
proportionality to ik, present in all these equations, reflects the conservation of the 
corresponding variable. 

3. I 

A 'generalized hydrodynamics', based on microscopic quantities, can be established 
by means of the formally exact Mori-Zwanzig approach to micro dynamic^^^. The 
latter makes use of projection operators, so that from any dynamical variable the part 
behaving like the conserved quantities is extracted. Thus the role of the variables 
defined in Eqs (3.1) is emphasized by the approach, establishing a connection with 
ordinary continuum hydrodynamics in its linearized version. However, the micro- 
scopic theory is not restricted to slowly varying fluctuations, and this results in the 
introduction of wavevector- and frequency-dependent transport coefficients. 

To demonstrate these predictions we consider the conserved variables to be 
arranged as a column vector A(k, t )  = (Ai(k, t ) ) .  The Mori-Zwanzig approach starts 
from the usual equations of motion a i ( k ,  t )  = i L j i ( k ,  t )  where L is the Liouville 
operator of the system. Then, by introducing projection operators defined as 

Tlw Gerzrra1i:ed Lciiigrcin Equution 

P .  . . = 1 (AT(%). . .)( A*(k)A(k))jl d , (k)  (3.3) 
j J  

the time correlation function ( j ? ( k ,  O)Ai(k, t ) )  is shown to satisfy the following 
generalized Langevin equation 

drK,(k, t)(AT(k, O)Ai(k, t - T ) )  (3.4) 
- rJ0 

(Note that in the definition of the projection operator, and frequently in the 
subsequent discussion, we use the notation A(k, t = 0) = A(k) for any variable A.)  In 
the above equation the "proper frequency matrix", R, is defined by 

iRij(k) = 2 (jF(k)Ai(k))(A*(k)A(k))G' (3.5) 
I 
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208 T. GASKELL, U. BALUCANI AND R. VALLAURI 

and the "memory matrix" K(k, t) by 

Kij(k, f )  = 1 (jT(k)e"' -P'L%(k))(K*(k)&k));l (3.6) 

where the "random force" f,(k) E (1 - P)Ai(k) evolves in time with the anomalous 
propagator eiC1 -'IL', which makes it orthogonal at all times to the components of the 
set &k). 

The conserved character of the variables A,(k) has two important consequences. 
First, the proportionality of Ai(k) to k implies that the non-zero elements of the proper 
frequency matrix are also proportional to k (assuming that the elements of the 
susceptibility matrix (a*(k)&k)) are regular as k 4 0, a requirement which is well 
satisfied away from critical points). Moreover, the non-zero components of the 
random forceL(k) K k make the elements of the memory matrix at least proportional 
to k2. In the limit k --* 0, the leading order dependence K,(k, t )  a k2 gives rise to a 
further simplification. It is easily shown43 that the replacement of the anomalous 
propagator ei(l-p'Lf with the ordinary one eiLr is correct to order k .  Thus, having 
extracted the leading k2  dependence, K,(k + 0, t )  can be expressed in terms of an 
ordinary time correlation function. 

Having outlined the general framework, we are now ready to discuss its predictions 
for the basic dynamical properties of the system. 

I 

3.2 Microscopic Dynamics and Transport Coefficients 

a )  Single particle motion: the self-difision coefficient The correlations involving the 
single particle density n,(k, t )  are a factor (l /N) smaller than those involving n(k, t) .  
Thus, n,(k, t )  can be considered to be effectively uncoupled from the other variables, 
and the Mori-Zwanzig matrix formulation reduces to a scalar one. The equation for 
the self time correlation function F,(k, t )  = (A,+(k, O)A,(k, t ) )  becomes 

ps (k  t )  = - dT K,(k, r)F,(k, t - T )  sd (3.7) 

since the proper frequency iQ,(k) = (A:(k)&(k)) vanishes because of the opposite 
symmetries of 11, and ri, under time reversal. The memory function reads 

(3.8) 

where P ,  denotes the projection operator onto the variable A,(k). A formal solution of 
Eq. (3.7) is obtained by introducing Laplace transforms F ( z )  = 1,"dt exp[ - z t ] F ( t ) ,  so 
that 

(3.9) 

K,(k, t )  = k2(o:(0) exp[- ikz,(O)]e"' -ps'Lr u,(O) expCikz,(O)I) 

F,(z) = [ Z  + k2d(k,z)]-' 

where 

d(k, z) = R,(k, z)/k2 

dt  e-zf(of exp[ - i k ~ , ] e " ' - ~ ~ ' ~ '  u1 exPCikz11) (3.10) 
= lorn 
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ATOMIC TRANSPORT IN LIQUIDS 209 

The usual Fourier spectrum of F,(k,  t )  is S,(k,  LO) = (l/rc) Re F ( z  = io), and can be 
determined experimentally from the incoherent part of the inelastic neutron scattering 
cross-section. 

As a general remark, the microscopic equivalent of the "local equilibrium" 
assumption introduced in ordinary continuum hydrodynamics requires the consider- 
ation of fluctuations with wavelengths much larger than the mean free path. 
Moreover, the behaviour of the relevant correlations is explored at times sufficiently 
large that many interactions have actually occurred. In  such a "hydrodynamic 
regime" where k + 0 and w + 0 (in that order) all the microscopic details are hidden 
in a few constants, which are essentially the ordinary transport coefficients. 

In  the case of single particle motion, the relevant property is self-diffusion. The 
corresponding d j u s i o n  coeflcient in the hydrodynamic regime is 

X V 

D = lim lim d(k, z )  = [ dt(vf(O)uf(t))  = 3 1 d t ( v , ( O ) . v , ( t ) )  (3.11) 
r-0 k - 0  J o  J o  

This equation relates an ordinary transport coefficient to the time integral of an 
autocorrelation fun~tion''.'~. Other examples of a "Green-Kubo relation" will 
subsequently appear. In this particular case, Eqs (3.9), (3.10) and (3.1 1 )  imply that 
F,(k ,  t )  = exp( - Dk't) in the hydrodynamic limit, which has the slow decay so typical 
of this regime. 

More generally, outside the hydrodynamic regime, Eq. (3.10) may be used to define 
a complex wavevector- and frequency-dependent diffusion coefficient d(k, z = io). 
Even if the presence of the anomalous propagator in the definition of d(k,z) 
complicates the theoretical analysis, i t  is often possible to gain some insight into the 
features of F,(k ,  t )  by making simple ansatze for the time dependence of D(k ,  t) (e.g. 
gaussian or exponential), with the constraint that certain sum rules derived from the 
short-time dynamics must be satisfied. A less phenomenological approach is based on 
kinetic and/or mode-coupling arguments; an example of the latter will be briefly 
discussed in Section 6. 

b )  Transverse momentum current: the shear viscosity coefficient. The overall isotropy 
of the system leads to another simplification in the remaining collective variables, 
namely the decoupling of the momentum density variables perpendicular to k, P"(k, t )  
and P'(k, t). from the other variables. Since there is no cross correlation between these 
two, equivalent, components we are again left with a single variable, say P"(k, t ) .  The 
transverse current correlation function C,(k, t )  = ([P"(k, O)]*P"(k, t ) )  has the equa- 
tion of motion 

(?,(A, t )  = - dtK,(k, t)C,(k, t - T )  (3.12) 

where, again, the proper frequency vanishes. Noting that C,(k, t = 0) = Nmk,T, the 
memory function reads 

K , ( k ,  t )  = (k2/NmksT)([a'"(k)]*ei(' - p T ) L t  0 *" (k))  (3.13) 

s,' 
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with P ,  the operator which projects onto P"(k), and 

aUB(k) = C (rnuyujS - $ c ( r ~ , j r j S , j / r ~ , j ) ~ ~ ( r ~ j ) ~  exp[ikzj] (3.14) 

is the microscopic expression of the (a, /I) element of the stress tensor. The formal 
solution of Eq. (3.12) in terms of Laplace transforms reads 

C,(k,  z) = N m k ,  ~ [ z  + (k2/nrn)tj(k, z)] - I (3.15) 

j j ' t j  

where 

= ( 1 / V k ,  T )  IoXdte -'r( [azx(k)] *e" - P T ) L r  az"(k)) (3.16) 

In the hydrodynamic limit k -+ 0, z -+ 0 we may ignore P ,  in the time propagator, 
obtaining 

q = lim lim i j (k ,  z)  = ( l / V k B T )  dt(a'"(k = O,O)a'"(k = 0, t ) )  (3.17) 
:-0 k - 0  

where 

The result (3.17) is the Green-Kubo relation for the shear viscosity coefficient. The 
corresponding Green ~ K ubo in tegrand 

q ( t )  = (l/l/k,T)(a'"(O)a'"(t)) (3.19) 

is the autocorrelation function of the non-diagonal components of the stress tensor, 
and is usually referred to as the stress autocorrelation function. From the expression 
for osx in Eq. (3.18) i t  is readily seen that q( t )  is made up of a purely kinetic 
contribution, a purely potential contribution and a part involving cross terms. While 
at low densities the kinetic part is dominant, in a liquid the value of q is almost totally 
determined by the potential energy contribution, given by 

(3.20) 

In contrast with the case of diffusion, the Green-Kubo integrand for the shear 
viscosity is a collective quantity which involves up to four distinct particles. This 
complicated structure is simplified only at t = 0, where, for example, the exact 
hierarchies for the three- and four-body distribution functions can be exploited to 
reduce q(0) to an expression involving only two distinct particles. By this means we 
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ATOMIC TRANSPORT IN LIQUIDS 21 1 

obtain a result for q(0) (which coincides with the rigidity modulus, G, of the liquid) 
given by 

q(0) = nk,T + (n2 /2 )  j drz2 d;lr)9(r) (3.21) 

with y ( r )  the radial distribution function. 
In the hydrodynamic regime the transverse current correlation function C,(k, t )  = 

C,(k, t = O)exp[ - ( k z /nm)q t ]  shows a slow monotonous decay with n o  trace of 
propagating transverse modes. In analogy with the discussion of single particle 
motion we may define a generalized viscosity coefficient, i j(k,  z = iw) ,  by means of Eq. 
(3.16). Again, exact analysis is difficult, but a simple "viscoelastic" ansatz like 
t l (k .  t )  = q ( k ,  O)exp[ - t/r(k)] (followed by reasonable assumptions about the k-depen- 
dence of ~ ( k ) ' ~ )  is sufficient to demonstrate that underdamped transverse modes may 
be supported by the liquid at larger k .  Fortunately, this occurs in a wavevector range 
which is readily accessible in computer simulation experiments. 

c )  Densirj. ,jluctuutions: rliertnal conductiiiity atid the lotiqituditiul z t w x i t y  cotlffi- 
cient The fluctuations of the remaining three conserved variables, n(k, t ) ,  PZ(k, t )  and  
E(k, t )  are coupled together and must be treated simultaneously in the Mori-Zwanzig 
framework. The complications in the matrix algebra are partially eliminated by 
replacing E(k, t )  with the new conserved  variable^^'^^' 

6(k. t )  = Z(k, t )  - ( r i (  -k)&k))[(ri( -k)h(k))]-'h(k, t )  (3.22) 

The new set [ i l ( k ) .  j 2 ( k ) ,  i 3 ( k ) )  = (h(k),  &k), .f(k)) consists of mutually orthogo- 
nal variables, and the susceptibility matrix ( j ( k ) * j ( k ) ) ,  together with its inverse, is 
diagonal. 

The proper frequency matrix R(k)  (Eq. (3.5)) comprises only non-diagonal elements 
because of time-reversal symmetry. In particular 

where we have written ( t i (  - k)h(k)) = N S ( k )  ( S ( k )  being the static structure factor of 
the liquid). and introduced the quantity 

B ( k )  = (E(k)*o"(k)) - ( k B T / S ( k ) ) ( A (  -k).&k)) (3.24) 

Note that according to the virial theorem (o"(k)) = PVb,,, with P the system's 
pressure. 

The memory matrix elements Ki,(k, t )  involve correlations between the components 
f;(k) = ( 1  - Po)ai(k) ,  where Po projects onto the set { a i ( k ) }  ( i  = 1,2 ,3) .  From the 
equations of motion, written in the form 

k(k,  t )  = ikq'(k, t )  (3.25) A(k, t )  = (ik/m)Pz(k, t ) ,  ?'(k, t )  = ikazz(k, r )  and 
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212 T. GASKELL. U .  BALUCANI A N D  R .  VALLAURI 

in which q'(k, t )  is the ;-component of the energy current, it is easily seen that 

f l ( N  = 0 
f2(k) = ik{aZz(k) - (k,T/S(k))fi(k) - (B(k)/(E*( -k)t(k)))E(k)} = ika"'(k) 

f3(k) = ikjq'(k) - ( l / N m k , T ) B ( k ) P ' ( k ) }  = ikq"(k) 

Consequently the non zero elements of the memory matrix read 

and 
(3.26) 

RZ2(k,  z )  = ( k 2 / N m k , T )  dte-"[a'"'(k)]*e"' -Po)Lra'"z(k) 

I?,,(k, z )  = ( k 2 / ( &  - k)E(k)) dte-"([q"(k)]*ei~' -Po)Lr  q ' W )  

Rz3(k,  z )  = (kz/(E*( - k)E^(k))) 

R32(k, z) = (kZ/Nrnk ,T)  dte-"([a'"(k)]*e"' q ' W )  (3.27) 

We now have the information to write down a set of Mori equations for the dynamic 
correlations ( i ? ( k ,  O)Ai(k, t ) )  ( i , j  = 1 ,  2, 3). The most interesting case is 
( j y ( k ,  0 ) j  , (k,  t ) )  = (A( - k, O)fi(k, t ) )  = N F ( k ,  t ) ,  where F ( k ,  t )  is the intermediate 
scattering function. The spectrum S(k ,  w )  of this density fluctuation correlation 
function is directly observed in light scattering experiments on fluids as well as in 
measurements of the coherent part of the neutron inelastic scattering cross section. The 
formal solution is readily obtained by Laplace transform, and reads 
F( k ,  z )  

dte-"([q"(k)]*e"' -Po)Lra"Z(k)) IOrn 
s,' 

- - ~ _ _ _ _  

S ( k )  

1- ' k2Ck/J 7-/mS(O)I 
z +  ( 2 + R22(k9 z )  + [in23(k) - RZ3(k,  ~ ) l [ i Q ~ ~ ( k )  - R32(k, z)l[z + 1?33(k, z)] 

(3.28) 
In the hydrodynamic regime we may now apply the limiting procedures discussed 
previously: extraction of the leading wavevector dependencies ( k  in the proper 
frequencies, k 2  in the memory functions), replacement of eicl  - P o ) L r  with eiLf in the 
memory functions, and finally evaluation for z = 0. Using isotropy arguments, the 
quantities I?,, and R,, are shown to give no contribution to  order k2. To order k ,  
because the memory functions are zero, S(k ,  w )  is characterized by three &like peaks 
at the frequencies 

w = 0 and w(k)  = kk[(k ,T/mS(O))  + ( B 2 ( k  = O)/Nmk,T(E*(0)E*(0))]1'2 (3.29) 

Noting that S(0)  = nkBTXT (where X- is the isothermal compressibility) and also that 
(E*(O)E*(O)) = (RA) = N k , T 2 c u  (where c, is the specific heat per particle at constant 
volume), it is possible to show that 

B Z ( k  = O)/(E(O)E(O)) = ( N ( k , T ) Z / S ( 0 ) ) T I V -  'dV/dTI2/nc ,~ ,  

= ( N ( k B  T ) z / S ( 0 ) ) ( c p  - cu)/cu (3.30) 
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with c p  = yc,, the specific heat at constant pressure. To obtain this result we have 
evaluated 

( E ( k  = O)a”(k = 0)) = k B T 2 ( d ( r Y z ( k  = O)/dT), = k B T 2 V ( d P / d T ) ,  
= k ,  T 2 (  N/nXT)  V - ‘ ( a  V / d T ) ,  (3 .31)  

and used a well known thermodynamic relation for the difference c p  - c , , .  The final 
result o ( k )  = f k [ y k , T / m ~ ( O ) ] ” ~  = f k c ,  coincides with the frequencies of the Bril- 
louin doublet, well known from continuum hydrodynamics, c,  being the sound velocity. 

At  the order k Z ,  the non-vanishing memory functions K,, and R, ,  provide decay 
mechanisms for the Rayleigh-Brillouin triplet, so that Eqs. (3 .29)  become 

w = ik2(, i /ync,)  and o ( k )  = & kc, - i k 2 r  (3 .32)  

In these expressions i. is the thermal conductivity and = i[(i/jjnc,)(y - 1 )  + q,/nm] 
is related to the sound attenuation coefficient, with qL the longitudinal viscosity 
coefficient. I t  is readily shown that i. is obtained as 

,i = ( c , , / n ) ( R , , ( k  + O ,  i = O)/k2)  = ( l / V k , T 2 ) ~ o a d r ( q ’ ( k  = O,O)q’(k = 0, t ) )  (3 .33)  

Comparison with the second of Eqs (3 .27)  shows that q”(k = 0) has been replaced by 

(3 .34)  

since the difference between the two quantities is proportional to P‘(k = 0) = cj mug, 
which can always be made to vanish at  all times by a suitable choice of reference 
frame. 

Finally the longitudinal viscosity is defined in terms of the memory function 
R z z ( k ,  z )  by the relation 

@ ( k  = 0) = c ( E j $  - a 1 (vj. + vj).rj,jzj,j/rjtj~’(rj,j)} 
j j’+ j 

r x  

qL = ( n m / k 2 ) R z 2 ( k  + 0, z = 0) = ( l /VkBT)  J dt(a’”(k = O,O)a’”(k = 0, t ) )  (3 .35)  
0 

which is the “diagonal” counterpart of the result (3 .17)  for the shear viscosity 
coefficient; in the longitudinal case the appearance of a”’ instead of the usual stress 
tensor component a’’ is responsible for the presence of additional terms in the 
Green-Kubo integrand (3 .35)  whose significance depends on which statistical en- 
semble is used to evaluate the averages4’. Starting from the general “viscosity tensor” 

q,oys = ( l / V k , T ) ~ o x d r ( o ‘ “ B ( k  = O,O)dyd(k  = 0, t ) )  (3 .36)  

and exploiting all its possible symmetry properties is an isotropic system (in a way 
analogous to the one used for the elastic constants in continuous media), it can be 
demonstrated that the longitudinal viscosity may be expressed in the form 

‘71. = (4r1/3) + V B  (3 .37)  

which defines the hulk viscosity coeficient. The Green-Kubo result for the latter 
follows and is given by 

qB = (4 V k ,  T )  C d t (  d ” ( k  = 0, O)O’”( k = 0, t ) )  (3 .38)  
i. l l  jox 

where the summations over i., p run over the Cartesian components x, y ,  Z.  
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To close this section, we shall make some further comments in connection with the 
generalized wavevector- and frequency-dependent transport coefficients. As pre- 
viously discussed, they can be formally defined through the Mori-Zwanzig frame- 
work, where they are essentially proportional to a memory function, R(k, z = iw), 
divided by k 2 .  Through these we can introduce purely wavevector-dependent quanti- 
ties e.g. q ( k )  = V(k, z = 0), as well as purely frequency-dependent coefficients e.g. 
q(w) = V(k = 0, z = io). I t  is important to note, however, that whereas the latter still 
retain the typical Green-Kubo form involving a Fourier-Laplace transform of an 
ordinary time autocorrelation function, the former do  not, except in the k + 0 limit49. 
This “asymmetric” behaviour derives from the fact that the anomalous propagator in 
the memory function can be replaced by the ordinary one, eiLf, only when k -, 0, and 
this leads to a usual type of correlation function. 

The framework presented above has formed the basis of much theoretical effort to 
understand the microdynamic behaviour and transport properties of liquids. In 
addition, it has been used extensively in computer simulation studies, along with 
alternative non-equilibrium molecular dynamic techniques. This type of approach to 
liquid state physics will now be discussed. 

4 COMPUTER SIMULATION EXPERIMENTS 

The first report of an extended calculation of the transport coefficients, is the paper by 
Alder el al.”, which is the eighth of a series devoted to the properties of a hard sphere 
system at different thermodynamic states. The aim of the paper was “to gain insight 
into the nature of many-body correlations” which are fully taken into account by 
computer simulation. Attention was therefore focussed on the deviation of the 
evaluated transport coefficients from the corresponding values predicted by Enskog 
theory. The results are reported in Section 5 ,  and form the basis of attempts to develop 
hard sphere models for the transport properties of liquids. We begin this section with 
a brief review of the techniques required for the calculation of transport coefficients in 
the rigid sphere system. 

4.1 The Hard Sphere Fluid 

Due to the impulsive nature of the interaction between hard spheres, Green-Kubo 
integrands are more difficult to use directly when the generalized ‘flux’ involved 
contains the forces between particles. The calculation of the shear viscosity, for 
instance, cannot be performed through the direct evaluation of the Green-Kubo 
expression given in Eq. (3.17), i.e. 

q = jorndtq(t) = ( l ,Vk,T)  j o m d t < c 7 ~ x ( o ) c 7 ~ ~ ( t ) )  (4.1 ) 

where we may write the off-diagonal element of the stress tensor as 

(4.2) 
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with F,(r) the force on sphere j due to its interaction with the other spheres. To 
circumvent this difficulty, one makes use of the fact that Eq. (4.1) can be recast in a 
form similar to that used to define the diffusion coefficient through the single particle 
mean square displacement i.e. 

In practice, i t  turns out to be more convenient to use an expression in 
relative positions and velocities appear; this is accomplished by writing 

(4.3) 

which only 

1 

where the sum is over all the collisions which occur in time t ,  T~ represents the time 
between two successive collisions and mAu5 is the change in momentum of particle j 
due to a collision with i. Note that in the last line of Eq. (4.4) the first term is purely 
kinetic, whereas the second represents the potential contribution. 

Similar expressions can be derived for the thermal conductivity and the longitu- 
dinal viscosity i.e. 

/I = l im( l /~k ,T)(2r )  ’( 1 {mr;(r)Ej(r) - mr;(0)Ej(O)} ) (4.5) 
r - x  [ i  I’ 

1 - 7  L i  T 
and 

q L  = Iim(l/VkBT)(2t)-’<[C {rnu;(t)r;(t) - mv;(O)rj”(O) - P V t }  ) (4.6) 

As in the previous Section, E j  refers to the total energy of particle j and P the pressure 
of the system. I t  is worth noticing that the corresponding expression for the self- 
diffusion coefficient D,  reads 

D = 1im~(21)-’([r1(t) - rl(O)I2) 
I -  x 

This indicates that the statistics in this single particle case is greatly improved when 
compared to those of the above ‘collective’ coefficients. Because, in addition to the 
average process over the initial time r = 0, an extra average is performed over the 
individual particles of the system. 

I t  is also possible to learn something about the physical processes which determine 
the value of a transport coefficient by obtaining the details of the Green-Kubo 
integrand. This is illustrated for the shear viscosity, for which, using Eqs (4.1), (4.3) 
and (4.4) it can be seen that with an appropriate definition of G ( t )  

(4.8) q ( t )  = (G( t )G(O) )  = i ( d 2 / d t 2 ) ( [ G ( t )  - G(0)l2)  
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which enables the stress autocorrelation function to be derived by numerical 
differentiation. A similar procedure leads to the other Green-Kubo integrands. The 
results have been used to check the validity of Enskog theory, which predicts 
exponentially decaying autocorrelation functions. 

The main conclusions that can be drawn from this first detailed analysis of the 
transport properties of a hard sphere fluid are the following: 

i)  The diffusion coefficient can vary significantly from Enskog theory predictions. 
Vortex effects5' develop at intermediate densities and produce a pattern of neighbours 
which tend to maintain the motion of a given particle in its initial direction. As a result 
the computed value of D exceeds the Enskog prediction. At higher densities, a particle 
is, on average, back-scattered so that the velocity autocorrelation function develops a 
negative part, which is not accounted for within Enskog theory. The vortex argument 
still applies but is masked by the back-scattering effect. This makes D smaller than its 
Enskog value. The presence of a long-time (i.e. t - 3 ' 2 )  tail in the Green-Kubo 
integrand has a minor effect on D at liquid densities. 

I t  should be noted also that an important dependence of the velocity autocorrela- 
tion function on the number of particles was found. The effect was explained in terms 
of the vortex flow induced in the finite sample. A second size-dependence, arising from 
the conservation of momentum requirement in the molecular dynamics calculation, is 
discussed and a correction applied. 

i i )  The same arguments apply to the kinetic part of the shear viscosity. However, at 
high densities the kinetic part is unimportant when compared to the potential 
contribution. In addition, when calculating the shear viscosity, i t  is particularly 
important to achieve an accurate evaluation of the stress autocorrelation function at 
intermediate and long times. (This has since been stressed by Erpenbeck and Woods2. 
Indeed, by carefully accounting for the long-time tail, and including size-dependent 
effects, they claim that at a packing fraction of 0.46 the shear viscosity coefficient is 
some 163.; higher than that obtained by Alder et 

iii) When compared to the stress autocorrelation function, the Green-Kubo 
integrands which determine the thermal conductivity and bulk viscosity show a faster 
time decay. In both cases, values for the coefficients were found to be close to the 
Enskog predictions over the range of densities explored. However, the accuracy for 
the bulk viscosity calculation was somewhat poorer than for the other coefficients 
(and a particularly large deviation from the theory was reported at the highest 
packing fraction considered). The relevant results are summarized in the Table 5.1. 

4.2 Lennard-Jones Fluids 

RahmanS3 developed the simulation method to provide a more realistic description of 
a liquid. He was the first to report molecular dynamics results for a transport 
coefficient in a model in which the (864) particles interacted via a continuous two- 
body potential. The latter was of the Lennard-Jones type, i.e. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
4
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



ATOMIC TRANSPORT I N  LIQUIDS 211 

with parameters ElkS = 120 K and = 3.405 8, chosen to simulate the properties of 
liquid argon. The self-diffusion coefficient was evaluated from the slope of a single 
particle mean square displacement, and with T = 94.4 K (i.e. reduced temperature 
T* = k ,  TIE = 0.787) and n m  = 1.374 g cm-3  (i.e. reduced density n* = na3 = 0.807), 
the value for D = 2.43 x cm2 s-  ' compares favorably with the experimental 
result D = 2.43 x cm2 s - '  at the same density and T =  90 K3'. A preliminary 
result at  a higher temperature T =  130K and lower density nm = 1 . 1 6 g ~ r n - ~  
suggested, however, that the temperature dependence of the diffusion coefficient was 
not very well reproduced by the LJ model. 

Since then, extensive calculations of the diffusion coefficient in a wide range of 
temperatures and densities have been reported by Levesque and Verlet54, who fitted 
the molecular dynamics data (see table 1 of this ref.), with an empirical formula 

(4.10) 

D* is the reduced value of D, r~ and ( r n d / 4 8 ~ ) " ~  being the length and time units 
respectively. This expression represents the data quite well except at low density 
( )I* < 0.65) and very low temperatures. For the relevant conditions the first term in 
Eq. (4.10) represents ~ 9 0 " "  of the total, and it predicts that D varies linearly with T, 
along an isochore. 

However, the situation in "computer experiments" can be as confusing as that 
arising from real diffusion experiments. Tanaka55 has studied the diffusion coefficient 
for the argon model, along the saturated vapour pressure curve. For the first state 
point examined by Rahman, he finds D = 2.09 x cm2 s - '  and that the tempera- 
ture-dependence is best represented by the Arrhenius formula 

D* = 0.006423T*/(~*)~ + 0.0222 - 0.0280~* 

D = 2.83 x exp( -768.4/RT) cm2 s - '  (4.1 1 )  

R being the gas constant. 
More recently, Heyes has claimed that simulation diffusion data is more accurately 

represented, over a wider range of thermodynamic states, by an expression of the 
form56 
D* = a + hT* + (c + d(T*)'  4)/(n*)2 + ( e  +f(T*)'14)/n* + n*(y + h(T*)'14) (4.12) 

The values for the parameters a, . . . , h, are reported in Table 3 of Ref. 56. 
The shear viscosity coefficient of a LJ system, for a state near the triple point, was 

first reported by Levesque et d5'. The value was about 30"/b higher than the 
experimental result for liquid argon. A calculation of the viscosity at the same state 
point has been repeated a number of times, using the same or different techniques, 
giving a result in close agreement with experiment. Schoen and H o h e i ~ e l ~ ~  discuss the 
discrepancy with the earlier result, and conclude that the latter was incorrect. It has 
been argued that the cause may have been the presence of long-lived metastable states, 
because the system was near the solidification. Special attention has to be paid to 
avoiding these because they prevent a correct statistical averaging process during the 
molecular dynamics ~ i m u l a t i o n ~ ~ .  

Computer data for q for other states of the LJ fluid are reported in Ref. 58, and the 
dependence of the results on the number of particles included in the simulation 
carefully investigated. Schoen and Hoheisel find that at the triple point, the results for 
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the stress autocorrelation function show no significant differences when N 2 500. In 
addition, the very long runs performed (100,000 standard time steps) allows a precise 
evaluation of the Green-Kubo integrand and an accurate study of its decay at  
relatively long times. They conclude that after about 2.5 ps the autocorrelation 
function is effectively zero. This is emphasized by the following details: i)  the initial, 
steeply decaying, part of integrand contributes more than 80 % of the total value of the 
shear viscosity, and ii) inclusion of the subsequent contribution between 0.6 and 1.4 ps 
accounts for 950/,. At  the triple point r]  = 2.86 mP, in good agreement with the 
experimental value for argon. At  state points away from the triple point, the stress 
autocorrelation function falls off rapidly with time and reliable values for r]  can be 
obtained with only moderately long computer runs. There is the additional bonus that 
there appears to be no significant dependence of the computed value of the transport 
coefficient on the size of the system. 

There have been fewer calculations of the bulk viscosity and thermal conductivity, 
although some results have appeared quite recently60*61. For the former, the 
appropriate expression to evaluate in a computer simulation study is given in Eq. 
(3.38), which we write here as 

‘ l B = ( 9  V k  B T )  1 S:dr(o’”(0)or~~(1)) (4.13) 
A l r  

I t  was pointed out in Section 3 that the explicit form of o’“ depends on the type of 
ensemble used. The results in Ref. 60 were obtained for a microcanonical ensemble, 
and in this case the stress tensor takes the form 

o’”(t) = 1 {rnuf(t)of(t) + rf(t)Ff(t)} - N k , T  - f 1 ( r i .  Fj) (4.14) 
i j 

The last two terms refer to the kinetic and potential contributions to the P V  term 
respectively. The Green-Kubo result for the thermal conductivity, E., is stated in Eqs 
(3.33) and (3.34). In  both cases the integrand can be broken down into kinetic, 
potential and cross terms. An analysis of the correlation functions at liquid densities 
leads to the following conclusions: i) The overwhelming contribution to the transport 
coefficient comes from the purely potential part of the correlation function. ii) The 
correlation function for i. shows a slower initial decline than its bulk viscosity 
counterpart, although it eventually decays much more rapidly. I t  also appears less 
sensitive to the system size and length of computer run. 

The values obtained from Ref. 60 and 61 for q B  and 1. are given in Table 4.1. They 
are in reasonable agreement with the available experimental data. Computer data for 
r]  and D are included for completeness. 

Vogelsang and Hoheise16* have recently carried out a more systematic comparison 
of the simulation and liquid argon data. Agreement between them is excellent except 
for states of high temperatures and pressure. 

4.3 Liquid Meral-Like Systems 

In spite of the large amount of experimental data for the shear viscosity of liquid 
metals very few comparisons exist with simulation results. Atomic transport in liquid 
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Table 4.1 
tion of argon (Hoheisel, Vogelsang and Schoen60). 

Bulk viscosity and thermal conductivity data from computer simula- 

0.01061 150 0.50 7.18 0.34 16 
0.01519 219.6 0.49 16.51 0.73 14 
0.01583 139.7 0.67 14.83 0.77 8.2 
0.01 824 120.3 0.81 20.81 1.09 4.8 
0.01 882 309.1 0.68 25.60 1.33 11.7 
0.02029 116.5 0.73 28.47 1.97 3.7 
0.02029 225.4 0.66 28.23 1.75 6.4 
0.02 138 85.5 1.05 28.47 2.97 I .72 
0.02161 81.8 1.05 32.54 3.08 1.5 
0.02593 221.3 1.02 59.57 6.09 2.3 
0.02634 303.4 0.82 59.57 4.78 3.5 

sodium and potassium has been studied by Berezhkovsky el al.63, using an effective 
pair potential of the form64 

cp(r) = ( z e ) ’ / r  - [2(ze)’/7c] dkF(k) sin(kr)/kr (4.15) 

The second term accounts for the indirect interaction between ions via the electron 
gas. This expression is derived within the pseudopotential framework, and F ( k )  is 
given byh5 

F ( k )  = -[V2k4/16n2(Ze)2][I/~(k) - 1]1~,,(k)1~ (4.16) 

with ~ ( k )  the dielectric function of the electrons and u,,(k) the Fourier transform of the 
electron-ion pseudopotential (assumed to be local). The Ashcroft empty-core modelh6 
was used for the latter. In comparing the resulting pair potential with the LJ type, one 
notices that i t  tends to be softer at short range, has a deeper minimum and displays 
weak oscillations at long distances. The values of the shear viscosity, obtained by 
evaluating the Green-Kubo integrand, turn out to be ~ 3 0 %  lower than the 
corresponding experimental data in the whole range of temperatures investigated 
both for sodium and potassium. The details are given below, in Tables 4.2 and 4.3, 
along with results for the self-diffusion coefficient. 

In  the same paper the bulk viscosity is also reported, but more interesting is a result 
for the self diffusion coefficient. Unfortunately, comparison with experiment is 
possible only at the lowest temperature. Agreement turns out to be good for sodium 
but poor for potassium. Moreover, an empirical formula proposed by Tanaka55 for 
rubidium, gives a good representation of the potassium data when it has the form 

(4.17) 

In  this expression, M is the atomic weight and V (  T )  the atomic volume (in A3)  of the 
saturated liquid at temperature T. A fit of the sodium diffusion data was not possible 
with a formula of this type, and an Arrhenius expression was not appropriate either. 

sb: 

D = 4.38 x 10-5(T,/M)1’2V(T)1’3(T/Tm)2.24cm2 s - l  
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Table 4.2 Self-diffusion and shear viscosity co- 
efficients of liquid sodium along the saturated 
vapour-pressure curve (Berezhkovsky et 0 1 . ' ~ ) .  

T ( K )  D x 1O5(crn2s-') q(rnP) q(rnP) 
M D  M D  Exp 

393 0.50 (0.48*) 4.50 6.20 
573 1.2 2.35 3.35 
800 2.2 1.71 2.30 

1073 3.7 1.20 1.65 
1500 7.2 1.26 1.24 
1800 9.8 0.87 1.07 

* Experiment 

Table 4.3 Self-diffusion and shear viscosity co- 
efficients of liquid potassium along the saturat- 
ed vapour-pressure curve (Berezhkovsky et 0 1 . ~ ~ ) .  

T ( K )  D x 105(cm2s- ')  q(mp) q(mp) 
M D  N D  EXP 

393 0.43 (0.65*) 3.75 3.85 
573 1.02 1.75 2.25 

1073 3.70 0.80 1.15 
1500 7.66 0.74 0.93 
1800 9.99 0.61 0.79 

* Experiment 

The shear viscosity of liquid rubidium has been evaluated by Balucani et d6', at 
two temperatures and density close to the melting point, and at two other states along 
the coexistence curve. The values obtained are summarized in the table below, along 
with some experimental results68. 

The potential model used in the simulation is obtained from Eqs (4.15) and (4.16), 
using a dielectric function and empty-core radius given by Price et ~ 2 1 . ~ ~ .  The good 
agreement with the experimental data gives some confidence in the ability of the pair 
potential, in this instance, to reproduce the dynamical behaviour of the real physical 
system. In Ref. 67 a detailed analysis of the stress autocorrelation function has been 

Table 4.4 Shear viscosity coefficients 
in liquid rubidium. 

318 0.9045 6.10 5.95 
338 0.9045 5.50 5.93 
625 0.7965 2.30 2.34 
942 0.7111 1.30 1.55 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
4
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



ATOMIC TRANSPORT IN LIQUIDS 22 I 

performed by comparing the MD result with a calculation based on the mode- 
coupling theory (see Fig. 6. l ). 

4.3 Non Equilibrium Metliods 

The problems associated with the accurate evaluation of the long time tail of the 
correlation functions and the intrinsic limitations imposed by the finite size of the 
system, has stimulated a different approach to the calculation of transport coefficients 
which is normally referred to as Non-Equilibrium Molecular Dynamics (NEMD). In 
their pioneering work Ashurst and Hoover”, evaluated the shear viscosity of soft 
spheres and LJ particles by molecular dynamic modelling of Couette flow. For fluid 
flow in, say, the .Y direction the periodic boundary conditions in the z direction are 
released and substituted by special boundaries which produce the desired non- 
equilibrium flux. That is, the z faces of the containing walls are replaced by two lattice 
layers, each consisting of a small number of particles with the same spatial correla- 
tions as the bulk fluid but fixed positions; the shear flow is induced by translating the 
two layers in opposite directions. External forces are applied only within the fluid-wall 
regions to maintain the desired velocity gradient in the z-direction. The shear viscosity 
coefficient is then determined from the measured velocity gradient set up along the x 
direction and the external shear force per unit area given by 

P,, = -vdu,/dz (4.18) 

In fact this relationship holds only when the shear stress is sufficiently small that 
higher order powers in the velocity gradients are negligible. An extrapolation to zero 
shear rate is then necessary to derive the correct value of the shear viscosity coefficient. 
The results obtained for the LJ fluid compared very favourably with those obtained 
by the standard MD method and the experimental data for argon. Calculations of the 
thermal conductivity of a LJ system by imposing a temperature gradient between two 
walls of the simulation cell, have been reported by Ciccotti er al.’l 

The major difficulty of this NEMD method arises from the possible onset of large 
inhomogeneities, induced by the small size of the systems investigated, which produce 
a degree of uncertainty in the interpretation of the results. This method is now largely 
confined to very specialized applications (see for example Ref. 72). 

In the second NEMD method the system is not driven by artificially imposed 
boundary conditions, but, instead, the equations of motion are modified by the 
introduction of a fictitious external field, F,,,. If the transport coefficient, L, has been 
identified by its Green-Kubo relation 

(4.19) 

the external field Fexl, is invented such that its coupling with the system yields a 
dissipative flux Jl(r). The steady state average ( J l ( t ) ) N E  is computed, and on the basis 
of linear response theory we have the result 

L = lim lirn(Jl(r))/Fexl 
F,,t+O r-ac  

(4.20) 
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Equation (4.20) holds only under the following conditions: (i) the new equations of 
motion are periodic, and (ii) the equations of motion generate trajectories in a phase 
space which fulfills the adiabatic incompressibility condition. The existence of a 
Hamiltonian, from which to derive the equations of motion, is a sufficient (but not 
necessary) requirement for condition (ii) to be satisfied. 

Various algorithms have been proposed for the calculation of self-diff~sion~~,  shear 
v i s ~ o s i t y ~ ~ . ~ ~ . ~ ~  and thermal cond~ctivity’~. A detailed review of the NEMD tech- 
nique has been given by Evans78. 

A very delicate point in the evaluation of transport coefficients through NEMD 
simulation is the proper extrapolation to zero external field strength, F ,  which is 
implicit in Eq. (4.20). For example in the case of the shear viscosity it has been 
argued79 that 

V ( Y )  = v(0)  - V’Y 1’2 (4.21) 
where -j~ is the particular form of F for shear viscosity, namely the imposed strain rate. 
This result has been tested by Cummings and Morriss” in a NEMD simulation for 
the shear viscosity of liquid Rb at the triple point. They conclude that although Eq. 
(4.21) is modified by terms proportional to y 2 ,  the leading effect is provided by y” ’ .  
However, it should be noted that recent long simulation runsE1 have shown that at 
low values of y, q ( y )  appears to be independent of the field strength. If so, this would 
imply that the evaluation of q by means of Eq. (4.21) could lead to a substantial 
overestimate. The controversial nature of this aspect of the technique also arises in the 
calculation of the thermal conductivity. Recent works2 has suggested that the linear 
behaviour with field strength, which has been assumed earlier77, may break down at 
sufficiently small values of the field. 

Finally, we mention recent extensive evaluation of transport coefficients in 
Lennard-Jones systemsa3, using both Green-Kubo and NEMD simulation tech- 
niques. An important objective of this work was to use the results to test the reliability 
of a hard-sphere description of the data in terms of a temperature-dependent sphere 
diameter. A similar type of analysis is the subject of Section 5. 

5 THE RIGID SPERE SYSTEM AND MODELS FOR ATOMIC 
TRANSPORT IN LIQUIDS 

The rigid sphere model has been successfully used to interpret the static structure and 
thermodynamic properties of dense simple liquidsE4. There is extensive information 
about transport coefficients in a rigid sphere fluid from both theory and computer 
simulation studies, and it is an inviting prospect to make this information the basis of 
a discussion of transport properties of simple liquids. By doing this we are assuming 
that the mechanisms for the transfer of particles, momentum and energy in the liquid 
are essentially the same as for rigid spheres. In the case of diffusion, for example, 
computer studies of rigid sphere systems support the contention that it is not realistic 
to extend to liquids the type of theory used to explain diffusion in solids, involving 
potential barriers and an activation energy necessary for an atom to move into an 
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ATOMIC TRANSPORT IN LIQUIDS 223 

available vacancy. Instead, the physical picture of the mechanism as a gas-like process 
emerges, but with mean free paths which are a fraction of an atomic diameter, so that 
diffusion occurs predominantly by a succession of small displacements8’. 

5.1 The rigid Sphere Fluid 

In Section 3 an exact expression for each transport coefficient was obtained in terms of 
a Green-Kubo relation. Before we take the rigid sphere fluid seriously as a model for 
transport in simple liquids we should investigate some of the details of the appropriate 
time-dependent autocorrelation functions. The instantaneous nature of the rigid 
sphere interaction, in fact, results in a different type of structure for the correlation 
functions, particularly at small times, when compared to results for liquids with 
continuous, differentiable potentials. The pertinent question to ask is how this affects 
the calculated values of transport coefficients. 

Once again, consider single particle motion and self-diffusion as an illustrative 
example. The appropriate normalized correlation function in the Green- Kubo 
relation (3.1 1 )  is the velocity autocorrelation function, $ ( t )  = 
(3k,T/m-’(v,(0).v1(r)),  and i t  is useful in the discussion to introduce the associated 
memory function K ( t ) .  As shown, for example, in Boon and Yip86 we may write 

K ( t )  = i ( t )  - dsK(t - s)$(s) sd (5.1 ) 

where i ( t )  = (F,(O).F1(t))/(3mk,T) and (F,(O). F , ( t ) )  is the force autocorrelation 
function. I t  follows that K ( t )  2 ( ( t )  can be useful in discussing the short-time 
dynamics of the memory function, since the latter’s time evolution is governed by the 
anomalous propagator which makes it less transparent. 

I t  is readily demonstrated, for example, that 

i(0) = K ( 0 )  = (fmk,T) 

(5 .2 )  

Note that the evaluation of the first term in Eq. (5 .2)  involves the two- and the second 
the three-particle distribution function. As shown by Schofield8’, we may also write 
this equation as 

K ( 0 )  = -(4nn/3m) drr2y(r)f’(r)cp’(r) + (4nn/3rn) drr2y‘(r)f’(r) (5.3) 

where the expressions on the right hand side are respectively the equivalents of those 
in Eq. (5.2), and we have introduced f ( r )  = exp(-cp(r)/k,T) - 1 and y ( r )  = 
g(r)exp(cp(r)/k, T ) .  We now consider the situation when the steepness of a repulsive 
potential increases to the hard sphere limit. Take cp(r) to be the inverse power 
potential &(a/r)”. Bearing in mind that f ( r )  --+ 6(r - a) as v -+ a, we have 

K ( 0 )  2 (4nna/3m)[y(a)~v + ay’(a)] 

J: JOrn 
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224 T. GASKELL, U .  BALUCANI A N D  R. VALLAURI 

showing that the pair contribution to K ( 0 )  diverges as v, while the triplet contribution 
remains finite. Introducing a length A,  through the equation (a/a - A)” = e,  as a 
measure of the penetration depth during a collision, we obtain A z a / v  for large v. An 
effective estimate of a binary collision time, and hence the relaxation time of the binary 
contribution to ( ( t ) ,  is given by A/vo  = ( a 2 m / k , T ) ” 2 v - 1  when vo = (k ,T/rn)1’2 is the 
thermal speed of a particle. 

Thus, as the rigid sphere limit is approached, the initial value of K ( t )  diverges as v 
while its decay time (like that of [ ( t ) )  tends to zero like v -  ’. It follows that the integral 
of the binary collision component, and hence its contribution to the transport 
coefficient, remains finite and relatively insensitive t o  the hardness of the repulsive core 
qf the potential. The latter is an important conclusion in a consideration of the 
relevance of the rigid sphere model8’. In view of the above discussion, we expect that 
for rigid spheres the memory function has the structure 

(5 .4)  

The delta function describes the effect of binary encounters and k( t ) ,  which remains 
finite as t -, 0, the influence of correlated sequences of collisions. As defined above, R 
is the time derivative of $ ( r )  at t = 0, and is given exactly by 

K ( r )  = 2 R 6 ( t )  + k ( t )  

R = ( 8 n r ~ ~ g ( a ) / 3 ) ( n k , T / m ) ~ ’ ~  ( 5 . 5 )  

where g(a) is the contact value of the radial distribution function. 
For the other transport coefficients the purely potential terms in the Green-Kubo 

integrands make the dominant contributions at liquid densities. In each case, the 
binary collision effects arise from the strictly two-body force correlation whose initial 
values again diverge with the steepness of the potential. In the rigid sphere limit they 
produce a delta function behaviour in the Green-Kubo integrand itself. Using the 
result from Eq. ( 3 . 1 1 )  that the self-diffusion coefficient is obtained as 

D = (kBT/rn)]ordr$( l )  = ( k B T / r n ) [ ] o ~ d r K ( t ) ] - l  (5 .6 )  

and including only the binary collision contribution to the memory function, i t  
follows that D = k,T/rnR. From the similarity of the two-body correlations involved 
in each case, it can be shown that the binary collision contributions to the transport 
coefficients (denoted by label b) are related through the equations 

R = k B T / m D b  = 10qb/nrna2 = 6qi/nrna2 = 4E.b/nk,02 (5.7) 

I t  is interesting to compare these results with Enskog theory”. The result for Db, in 
fact, coincides with the Enskog approximation for the diffusion coefficient, namely 

D, = (3/8na2)(ksT/rnn)”2g(a)-1 ( 5 . 8 )  
Enskog results for the shear viscosity and thermal conductivity coefficients include 
kinetic and cross terms as well as the purely potential contributions. They are 
frequently given in the form 

qE = q o [ g ( a ) - ’  + 0 . 8 ~  + (48/25n)g(o)x2  + 0.150g(a)x2]  
i., = % o [ g ( a ) - l  + 1.2.~ + (32/25n)g(a)x2  + 0.340g(a)x2]  (5.9) 
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ATOMIC TRANSPORT IN LIQUIDS 225 

Table 5.1 
values (Alder, Gass and Wainwright5’). 

Ratios of computed hard-sphere transport coefficients to the Enskog 

100 1.02 
20 1.04 
10 
5 1.16 
3 1.34 
2 1.27 
1.8 1.15 
1.6 0.84 
1.5 0.58 

- 

1.01 + 0.02 
1.00 rf: 0.02 
0.99 f 0.04 
0.99 f 0.05 
1.02 f 0.01 
1.11 f 0.06 
1.10 f 0.03 
1.44 f 0.07 
2.16 f 0.09(a) 

0.98 f 0.02 
0.99 f 0.02 

0.156 0.97 f 0.03 
0.147 1.00 f 0.01 
0.157 1.02 f 0.03 
0.147 1.03 rf: 0.02 
0.1 50 1.05 f 0.02 
0.168 1.05 f 0.03(a) 

- 

0.9 0.2 
1.1 f 0.2 

0.9 f 0.2 
0.98 f 0.07 
0.9 f 0.2 
1.1 f 0.2 
1.1 f. 0.2 
0.6 f 0.2 

~ 

(P) Extrapolated lo infinite system. 
( a )  500 particle system. All other data refer to 108 particle system 

where x = (2nna3/3), and qo = (5/16a2)(mk,T/~)“2 and 1, = k,(75/64a2) x 
(k ,T/nm)”2 are dilute gas values of the coefficients. The first and second terms on the 
right hand side, in both the above equations, correspond to kinetic and cross terms 
respectively. The third gives the exact binary collision component and the last an 
estimate of further collision effects. There are slightly different estimates of the latter 
quoted in the literature. In the shear viscosity coefficient, Re~ibois*~,  for example, has 
a value of (4/25)qog(a)x2, rather than 0.150q0g(a)x2; and for the thermal conducti- 
vity, (9/25)2,g(o)x2 instead of 0.340i,g(a)x2. Only collisional effects contribute to the 
rigid sphere bulk viscosity, and the Enskog value is dominated by the binary 
collisions, so that 

(5.10) 

However, Resibois again includes a minor addition to this expression, in his version of 
the Enskog approximation, which increases the numerical factor by 8/225. 

In Table 5.1 the Enskog theory predictions are compard with the molecular 
dynamics results of Alder, Gass and Wainwright5’. The extrapolated values for 
infinite systems are obtained from the latter reference, but note that later work 
suggests that the procedure may have overestimated the corrections”. Nevertheless, 
the deviations from D, and q, are particularly marked as the density increases and 
V/Vo( = J2/na3) becomes 12.0, Vo being the volume occupied by the spheres at close 
packing. 

The Stokes-Einstein relationship between D,, and qHs,  for slip boundary condi- 
tions, takes the form D = k, T/47cq(a/2). Although this is derived for a ‘large’ spherical 
particle immersed in a continuous medium, a noteworthy feature of the above results 
is that i t  appears to be applicable to the rigid sphere fluid. The fourth column in the 
above table shows that the quantity Dqa/k,T is strikingly constant for V/Vo I 5, and 
very close to the value 1/2n(=0.159). A more detailed discussion of the Stokes- 
Einstein relationship, valid also for dense systems with continuous potentials, will be 
presented in Section 6. 

Microscopic theories of all aspects of the dynamics of a rigid sphere fluid, which 
attempt to improve Enskog theory (with varying degrees of success), are not in short 

E -  h 
q S  - Y]B = q O [ (  6/5n)g(o)x21 

PCL. B 
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226 T. GASKELL, U. BALUCANI AND R. VALLAURI 

supply. The later studies have involved developments of kinetic theory in conjunction 
with a form of mode-coupling approximation (see Section 6 for a discussion of the 
physical concepts behind this approach). Despite their interest and importance, such 
theories are not our principal concern here, and we refer the reader to the work of 
Leutheussergl as a recent example, and for a list of references. The work of Resiboisa9, 
Furtado et aL9’ and Sung and Ste11g3 is also mentioned because specific calculations 
of the velocity autocorrelation function and/or self-diffusion coefficient were made, 
over a wide range of packing fractions, to try to explain the density dependence of the 
simulation data for D. In spite of these efforts, when using the rigid sphere fluid as a 
basis for the interpretation of transport properties of liquids, the most useful 
procedure remains some form of phenomenological approach. This makes use of 
fitted forms for the ratios shown in Table 5.1, which have some simple dependence on 
v/ vo . 

5.2 

Dymond9* has proposed some practical methods of achieving such a rigid sphere 
model of atomic transport in simple liquids. For diffusion, he found it useful to define 
a dimensionless quantity 

D* = g(O)- l(V/vO)(DHS/DE) (5.1 1) 

which could be calculated from the computer results and fitted to a linear function of 
V/ Vo, namely, 

D* = 1.271[V/Vo - 1.3843 (5.12) 
Over the range 1.5 I V/Vo I 2.0 the accuracy is within 2%. Using the result for D, 
and the equation N o 3  = d V 0 ,  from which a’ = ( d V 0 / N ) 2 1 3 ,  we obtain 

(5.13) 
M is the molar mass and R the gas constant. Combining the last two equations, and 
using molar values of N and V it follows that 

Models of Atomic Transport Coeficients in Liquids 

D* = DHs( 8/3)( nM/R T )  ‘ I 3 (  2 N /  Vo) 

DHs = 2.257(RT/M)”ZV,2’3[V - 1.384Vo]10-5 
= 2.306(T/M)”ZV,2/3[V - 1.384V0]10-5 cm2 s - l  (5.14) 

In relation to the viscosity and thermal conductivity he also pointed that within the 
uncertainty of the computer data, and for 1.5 I V/V, I 3, qO/qHs can be reproduced 
by the expression 

qo/qHs = O.2195[V/Vo - 1.3 

and for 1.5 I V/Vo I 2, lo/& by 
&/AHs = O.I611[V/VO - 1.2 

In terms of practical units these equations become 
q,: = 14520(MT)- ”’ V ,  1’3[ V - 

41 

71 

l.384Vo] (5.15) 
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ATOMIC TRANSPORT IN LIQUIDS 221 

with qHS in poise, and 

2,; = 1430(MT)i’2V,”3[V - 1.27V0] (5.16) 

where AHS is in cal .cm-’s-’  K - ’ .  
Within the rigid sphere model the above expressions for DH,, ,IHs and qHS are 

identified with the experimental transport coefficients of a liquid. Note that the form 
of these fits implies that D q / T  is constant, which is consistent with the Stokes-Einstein 
relationship between D and q. When testing the applicability of these results to liquids 
it has to be appreciated that V, depends on the effective hard core diameter, u. The 
latter is expected to depend on both temperature and density (or pressure). We 
discuss, below, a theoretical expression for the temperature dependence, but first 
consider a more empirical approach, used by D y m ~ n d ~ ~ .  He applied it to the 
interpretation of the transport properties of liquid carbon tetrachloride, whose 
molecules are roughly spherical, and for which accurate experimental data is 
available. Values for V, were obtained, along a number of isotherms, by fitting 
Eq. (5.15) at each data point of the measured viscosity95 over a pressure range of 
1500 atm. These were then used in Eq. (5.14) to calculate the self-diffusion coefficient 
on each isotherm. Very good agreement with experimental data96 was obtained. A 
similar test using methane measurements along the saturated vapour pressure line 
also proved satisfactory. For methane, the effective core diameter determined from V,, 
changed from 3.77i(  at 90.92 K to 3.63 A at 153.5 K. Liquid metals data was 
investigated in the same way by van L ~ e f ~ ~ .  Since, as we have stressed, data of the 
shear viscosity coefficient are generally more accurate and extensive than for D, he 
also used Eq. (5.15) to determine V, and hence a. At constant pressure, and over a 
temperature range from the melting point (T,) to 4T,, a(T) for the alkali metals 
decreased by about 15%. This is a greater reduction than van Loef reports for the 
effective core diameter in argon over a similar temperature range. This difference is 
qualitatively consistent with current theories of the effective pair potentials in liquid 
metals. As pointed out in Section 4, when compared with a typical Lennard-Jones 
6- 12 potential the repulsive part is somewhat softer, particularly for the alkali metals. 
Having obtained the effective diameter, Eqs (5.14) amd (5.16) can be used to predict D 
and A. The calculated values for D and 2 show discrepancies of the order of k20% 
when compared to experimental data for argon along the saturated vapour pressure 
curve. For the alkali metals there is a similar discrepancy for D at the melting point (A 
of course is dominated by the electron contribution) but the values are systematically 
lower. The discrepancy decreases with increasing temperature. Despite its limitations, 
this type of approach can be made the basis of a useful practical means of correlating 
transport data over a wide range of experimental  condition^.^^ 

Another type of application of the rigid sphere model, proposed by Protopapas et 
U I . ~ ~ ,  is to assign the core diameter the average distance of closest approach in a 
binary collision. At contact, therefore, the pair potential should be proportional to 
k ,  T i.e. cp(r = a( T ) )  = ak,  T. It is assumed, also, that between the potential minimum, 
a,,,, and u ( T )  the potential has a parabolic shape i.e. cp(r) = A(r - a,,,)2, where A like a 
is a proportionality constant. From these two conditions it follows that 

o(T)  = a, - (ak,T/A)”2 (5.17) 
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and from its application at the melting point it is readily shown that 

a( T )  = a,[ 1 - B( T/TM)”2] (5.18) 

with B = (a,,, - a(T’))/a, = (ak,TM/Aa~)”2.  The packing fraction at the melting 
temperature, pM, is introduced so that p M  = (~n~o(T’,)~)/6, with nM the number 
density of the liquid. Combining this with Eq. (5.18) gives 

a(T)  = (6pM/x~M)~’~[ l  - B(T/TM)1’2]/(1 - B )  (5.19) 
This result for a(T) is used in an expression for D given by 

D = g(0)- ‘(3/8naZ)(k,~/Bm)”2(D,,/~E) (5.20) 

which, in the spirit of Dymond’s approach, is identified with the self-diffusion 
coefficient of the liquid. The ratio D,s/DE, which depends only on the packing fraction 
of the fluid, is obtained from Alder and Wainwright’s data. The contact value of the 
radial distribution function, g(a), is also determined by the packing fraction and the 
sphere diameter. Thus, given the number density of the liquid, the packing fraction is 
calculated in terms of a(T), and only two parameters pM and B are required to predict 
the transport coefficient. These are determined in an empirical fashion. The packing 
fraction is estimated by fitting D to the experimental value at the melting point. For 
the liquid metals investigated a value of about 0.472 was obtained, and adopted for all 
liquid metals. Table 5.2 shows the accuracy of the fit which was achieved with 
pM = 0.472. The parameter B is determined by selecting it to fit the experimentally 
determined temperature dependence of the diffusivity. pro to papa^^^ found, rather 
surprisingly, that the same value of B = 0.1 12 could describe all metals for which data 
is available (bearing in mind the scatter in the data, and the differences between the 
results of different experiments). Some attempt to understand this result has been 
made9*. 

Table 5.2 Comparison of melting 
point values for D x lo5 (cm2 s- ’). 
The experimental values are from a 
number of sources (Protopapas, An- 
derson and Parlee9*), the calculations 
are based on Eqs (5.20) and (5.19). 

Element Experiment Calculated 

Li 
Na 
K 
R b  
c u  
Ag 
Zn 
Cd 
Hg 
Ga 
In 
Sn 
Pb 
Ar 

6.80 
4.22 
3.82 
2.62 
3.96 
2.55 
2.05 
1.78 
1.17 
1.72 
1.74 
2.05 
1.68 
1.53 

7.01 
4.24 
3.85 
2.68 
3.40 
2.77 
2.55 
2.00 
1.07 
1.73 
1.77 
1.96 
I .67 
1.57 
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ATOMIC TRANSPORT IN LIQUIDS 229 

The predicted variation of the self-diffusion coefficient with temperature is also 
demonstrated in the latter reference. For some liquid metals the theory predicts the 
temperature dependence of experimental diffusion data fairly successfully -although 
the temperature range involved is usually of the order of 200-300 degrees only. For 
others, i t  is less convincing. The predictions of an alternative hard sphere 
and those of quite different theories are also summarized in Ref. 98. 

In all these approaches some implicit assumptions are made about the transport 
mechanism. A number of them, for example, predict reasonable values for the self- 
diffusion coefficient despite the fact that different concepts of the underlying mechan- 
ism are inkolved. Another point of concern is that they fail to correlate the assumed 
transport process with the time dependence of the Green-Kubo integrands (i.e. the 
atomic dynamics), as determined by computer simulation. In Section 6 we avoid 
preconceived ideas and discuss attempts to predict transport coefficients from 
microscopic theories of the relevant autocorrelation functions. 

6 MORE ADVANCED THEORETICAL METHODS: 
INTERRELATIONSHIPS BETWEEN TRANSPORT COEFFICIENTS. 

As we saw in Section 3, ordinary transport coefficients enter into the dynamics of 
quasi-conserved variables and directly control the (slow) decay of the corresponding 
time correlation functions for small wavevectors. In turn, transport coefficients are 
expressible in terms of Green ~ Kubo integrals involving generalized “fluxes”. From 
Eq. (3.6). the time evolution of the latter is seen to proceed in a subspace orthogonal to 
the one spanned by the “slow” variables. I t  may seem appropriate therefore, to 
assume that the decay of the Green-Kubo integrands can be considered fast enough 
to be described by simple approximation schemes which involve only limited 
information of the short time dynamics. An example of such a procedure has indeed 
been given in Section 5, where the result D z k,T/mR was obtained, R being the 
initial slope of the Green-Kubo integrand, in this case the velocity autocorrelation 
function. 

Although reasonable, we small see that the argument has some internal inconsisten- 
cy which makes its applicability more and more doubtful as the density of the system 
increases and/or the temperature decreases. The Green-Kubo integrands may, for 
example, develop relatively long-lasting effects which are neglected in the simple 
approximation schemes and which may give significant contributions to the values of 
the transport coefficients. This is demonstrated in Table 5.1. for the rigid sphere fluid, 
where the discrepancies between the computed values of D and q and their Enskog 
values (predominantly determined by uncorrelated binary collisions) become quite 
evident at large and even intermediate densities. In the last decade a rather 
comprehensive theoretical framework has emerged to try to calculate and explain 
these effects in the dynamics of simple liquids. I t  combines the concepts of kinetic 
theory (usually employed at low densities) with suitable projection operator tech- 
niques, referred to as mode-coupling theory. As anticipated in Section 5, we shall not 
attempt a detailed account of these methods (cf. Refs 101, 102 for a review); however, 

P C L  C 
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since mode-coupling techniques are particularly suited to a description of dynamical 
effects at intermediate and long times, a brief discussion of the latter is appropriate 
here. 

The main internal inconsistency alluded to in the last paragraph is that the 
orthogonality of the random forces to the “slow” variables Ai(k -0) does not 
necessarily mean that the memory function has only rapidly varying components. It  is 
possible to form products of the variables (“modes”) i.e. (1 - P)di(q)Aj(lk - ql), 
(1 - P)di(q)Aj(q’)A,( I k - q - q’I ) etc., which are also slowly varying for sufficiently 
small q. q’, etc. Due to the presence of ( 1  - P) ,  these products lie in the same subspace 
as the random forces which may have a non-zero projection on them. Consequently, 
one can see that the random forces, and hence the memory functions and correspond- 
ing Green-Kubo integrands, may have features which vary only relatively slowly with 
time. In practice, almost all applications of mode-coupling theory have considered 
only bilinear products of A i  variables, although even then there are an infinite number 
of such products, corresponding to all allowed q’s in the system. 

6. I Mode-Coiipling Theory 

The technique is illustrated with two examples: 

i)  The first is provided by the derivation of an expression for the velocity 
autocorrelation function. As discussed in Section 3.2(a), this Green-Kubo integrand 
for the diffusion coefficient is derived from the memory function K,(k ,  t ) / k 2  (associated 
with the self-correlation function F,(k,  t ) )  in the k -+ 0 limit. The first relevant variable 
to consider in the bilinear point is the single particle density fi,(q, t ) ;  the second has 
necessarily to be a current in order to have a non-zero projection on the random force, 
which is proportional to the particle velocity. Thus, the product reads B(k - 0) = 
fi,(q)p( -q), where ct runs over the Cartesian components of the momentum density 
defined in Eq. (3.1). The projection operator P = P ,  has been omitted, since in this 
case i t  gives zero contribution. Within mode-coupling theory the random force is 
given by its projected component onto the variables B(k - 0) i.e. 

f ( k  + 0, f )  

= 1 c ( i k .  v ,  fi,(q)& - q))C<fi,(q)B“( - s)ris(qP*( - q))1- fi,(q, t)& - q 9  t )  

= ik(  N m )  - 1 fi,(q, t)p’( - q, t )  

4 5  

(6.1 ) 

The projection coefficient (“vertex” function) is ( N m ) - ’  and we have chosen k in the z 
direction. I t  then follows that the velocity autocorrelation function is given by 
( f (k -+ O,O)f*(k -+ 0, t ) / k 2 .  Within the ensemble average, the single particle densities 
and current components are factorized, a typical procedure in mode-coupling theory, 
so that we obtainlo3 

q 

(v,(O).v,(t)) 5 3(Nm)-2 1 <p’(-q, o)p’(q, t)>(fi,(q, O)fi,(-q, t )> 
4 

= [ ~ m ~ ( 2 n ) ~ ] -  dqn - CC,(q, t )  + C,(q, t)IF,(q, t )  (6.2) 
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ATOMIC TRANSPORT IN LIQUIDS 23 1 

where the momentum density fluctuation correlation function has been expressed 
through its longitudinal and transverse components with respect to the direction of q. 
The integral cut-off emphasizes that the theory can be justified only when the integral 
is dominated by a limited range of wavevectors. 

This result may be expected to apply at intermediate and long times, which in 
practice will be that regime where the wavevectors greater than q, are irrelevant, and 
the results become independent of the upper limit which may be taken to be so. At 
sufficiently long times, where the small q components in the integral dominate, the 
currents may be given their hydrodynamic form. I t  is easily shown that the 
longitudinal part contributes terms which have an exponential decay, and that with 
C,(q, t )  = N m k ,  T exp[ -(q/nrn)q2r] and F,(q, t )  = exp[ - q 2 D t ]  we obtain 

(6.3) 

In this way the theory predicts the celebrated f - 3 ‘ 2  tail, in line with the result deduced 
from computer simulation data of the velocity autocorrelation f u n ~ t i o n ~ ’ ” ~ ~ .  The 
experimental verification of this effect in liquid Na has recently been reported’O5. 
Through its formulation, mode-coupling theory emphasises the long time behaviour. 
I t  is not surprising, therefore, that Eq. (6.2) predicts unphysical results at very short 
times (in particular, a divergent value at t = 0 as qc + xi). 

ii) The second application concerns the memory function K,(k, t )  (Eq. (3.13)) 
associated with the transverse current. In this context it is considered appropriate to 
project the random force onto the subspace of bilinear products of collective 
conserved variables, The set chosen consists of the three momentum current compo- 
nents plus the density fluctuation. We take advantage of the expectation that, at liquid 
densities and sufficiently small k ,  the potential contribution to the random force is the 
dominant one and neglect the rest. This assumption is completely confirmed by 
molecular dynamics data of the stress autocorrelation functionIo6. I t  then follows that 
the vertex functions are zero for all decay channels of bilinear products of density and 
current density component fluctuations, other than those of two density modes. This 
is immediately obvious for a product of a density and current component, bearing in 
mind our simplification of the random force. Using the properties of the canonical 
ensemble i t  can also be demonstrated for the product of two current components. The 
surviving contribution leads to the result’07 

< ~ ~ ( O ) ~ v ~ ( t ) ) , , , ~  = (kBT/4nm)[n(rl/nrn + D ) t ] - 3 ’ 2  

(6.5) 

This equation has been used recently to interpret molecular dynamics data of the 
stress autocorrelation function in a liquid Rb modello6. A viscoelastic scheme leads to 
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P S  

Figure6.1 Potential contribution to the stress autocorrelation function of liquid rubidium at T = 338 K. 
Dots: MD data. Full line: the mode-coupling result (Eq. (6.5)) with qcu = 1 1 . 1 .  Dashed line: the 
mode-coupling result with q,u = 47.9. 

a realistic expression for the intermediate scattering function, F(4 ,  t ) ,  and S ( 4 )  is taken 
from computer simulation results. The theoretical prediction of the time-dependence 
of qpp(t)  is compared with simulation data in Figure 6.1, for two quite different values 
of qc. For t 2 0.5 ps, the choice of cut-off has no significant effect on the result, and this 
gives us confidence in the mode-coupling procedure for this time domain. Once again, 
the expression cannot be expected to reproduce the correct initial behaviour 
(although an extrapolation procedure has been devised to produce an excellent 
overall result and an accurate prediction of the viscositylo6). For small t ,  a quite 
different treatment of the (rapid) dynamic events is clearly necessary. In addition to 
possible ansatze to model the initial decay of this and other correlation functions, 
some features of the short time dynamics may be incorporated by delaying the mode- 
coupling analysis to a later stage in the Mori continued fraction representation"'. 
More satisfactory, are kinetic theory methods, combined with mode coupling 
techniques which have been successful in predicting the characteristic dynamical 
features at all times'09. A consequence of this type of approach, which is indicated by 
the expressions in Eqs (6.2), (6.4) and (6.5), is that one correlation function tends to be 
expressed in terms of others. As a result, to be completely consistent within this 
framework, some correlation functions of interest, for example F(k,  t ) ,  have to be 
obtained by simultaneously solving several non-linear equations. The determination 
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ATOMIC TRANSPORT IN LIQUIDS 233 

of transport coefficients can become rather involved, and the physical processes of the 
transport mechanism obscured. 

6.2 Interrelationships Betw3een CoefJicients 

Writing one correlation function in terms of others can sometimes considerably 
simplify the problem of looking for interrelationships between transport coefficients. 
Examples have already been reported in Eq. (5.7), without the aid of mode-coupling 
theory. In that case, the simplicity of the results is a consequence of the binary 
collision approximation. Despite this, some of the predictions for the ratios of 
coefficients appear to be realistic for liquids, others are not. For example, from Eqs 
(5.7) we obtain q / j .  = 2m/5kB,  which is in good agreement with the ratio of the 
experimental values for argon at the melting point. On the other hand, these equations 
give r]/qB = 3/5. For argon the ratio is z 1.25. I t  is safer to assume that at liquid 
densities different approaches have to be developed. In the following we shall discuss a 
microscopic derivation of the frequently used Stokes-Einstein relation between D and 
q. Moreover, in this particular case i t  appears possible to establish for the Green- 
Kubo integrand involved a simple but consistent framework in which both the short- 
and long-time features are accounted for. 

The starting point is again the velocity autocorrelation function. As is well known, 
in macroscopic treatments of a fluid a velocity field can be introduced, and implicitly 
defined by some coarse-grained average comprising a microscopically large number of 
particles. The concept can usefully be generalized at the microscopic level by 
introducing a velocity field of the form v(r, t )  = xi vi(t)f( Ir - ri(r)l). The form factor 
f ( r )  is constructed so that ( i )  the velocity field is essentially constant across an atomic 
diameter and (ii) the macroscopic sum rule n drv(r, t )  = xi vi(t) is satisfied. For all 
practical purposes, both requirements can be met by choosing a step function form for 
f ( r ) ,  whose width, a, is determined by the condition (4/3)7ra3 = 1. By using the 
velocity field to evaluate the velocity autocorrelation function, one may exploit the 
relatively slow variation of atomic positions in the liquid with respect to the rate of 
momentum transfer, to arrive at’ l o  

( V , ( o ) .  V , ( r ) )  = [ l~~mz(2n)31Sdqf (q ) [C , (y .  t )  + 2cT(q ,  t )]F,(q,  t )  (6.6) 

In this expression, J ( q )  = (47raz/q)j,(qa), is the Fourier transform of the f ( r )  andj,(x) 
being a spherical Bessel function. Comparison with the mode-coupling result in Eq. 
(6 .2)  shows that the factor l/n has been replaced by f ( q ) .  Since J ( q  + 0) = l/n, Eq. 
(6.6) will predict the correct t - 3 ’ 2  decay of the correlation function. However, in 
contrast with Eq. (6.2), the physical requirements on v(r, r )  make Eq. (6.6) correct even 
at short times. I t  is easy to show that the latter equation reproduces both the initial 
value and short time decay of (v,(O)~v,(t)). Moreover, with realistic models for C,, 
C T  and F, .  this result is found to account remarkably well for computer data of the 
velocity autocorrelation function even at intermediate times-including the so-called 
“cage effect”-for several systems in the liquid range’ 1 1 ,  
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A simplification of the above equation, by putting F,(q, t )  = 1, is made possible by 
the relatively slow variation of the atomic coordinates. This has a very minor effect on 
the results, a statement which is readily appreciated at long times, bearing in mind 
that in liquids q/nm & D. Integrating this simplified version of Eq. (6.6) with respect to 
time, and noting that there is no contribution from C,(q, t )  = - (m/q2)P(q ,  t ) ,  we 
obtain’ l 2  

D = ( 1/3n2Nm) Jorndqqi7(q) jorndrcT(q, t )  (2 .7)  

To see the consequences of this theory we take for the transverse current the 
hydrodynamic result C,(q, t)  = Nmk,T exp[ - (q /nm)q2t ] ,  and Eq. (6.7) becomes 

(6.8) 
which is the Stokes-Einstein relation, with a = [ ( 4 / 3 ) n n ] - ’ I 3  playing the role of the 
particle radius, R.  This is consistent with its earlier definition within the velocity field 
concept. Using experimental results for q, Eq. (6.8) is able to predict diffusion 
coefficients in fair agreement with measured values, especially at high densities. As one 
might expect, however, R = a will tend to overestimate the effective particle radius 
and Dhyd underestimate D. 

If, instead of using the hydrodynamic form for C,(q, t ) ,  we apply the exact result 
given in Eq. (3.15), we obtain from (6.7) 

D z (k ,T/4nqa)  = DhYd 

(6.9) 

In this expression, we have introduced a wavevector-dependent viscosity coefficient 
q(q )  = G(q, z = 0). Dh,d is obtained with q(q) = q(0) = q, but in fact q(q)  is strongly 
dependent on q, and this must be taken into account when evaluating the integral in 
Eq. (6.9). A fully consistent theory of this q-dependence is still lacking, except at large 
wavevectors, where ideal gas theory gives 

q(q -+ co) = (2mn2kBT/n)’”q-’  (6.10) 

To see the effect we can use the simple form q(q)  = q [ l  + ( ~ l q ) ~ ] - ’ ,  with A z 0.30, 
which is a reasonable representation of rigid sphere computer data’ ’’, except of 
course at large q. Substitution into Eq. (6.9) leads to R = a/[1 + ~ ( A / u ) ~ ] ,  and 

D = Dhyd[ 1 -I- ~ ( A / L I ) ~ ]  (6.1 1 )  

which corrects some of the deficiencies of the hydrodynamic treatment. The impor- 
tance of the q-dependent visocity in this microscopic derivation of the Stokes-Einstein 
law indicates that the latter’s apparent simplicity is somewhat deceptive. The concept 
of “particle radius” in the relationship between D and q contains a good deal of 
physical information. In this context, we point out that apart from the rigid sphere 
data of q(q), there are computer simulation results for Ar’14 and Rb”’ models. In 
addition, data for the wavevector-dependent longitudinal viscosity has recently been 
deduced from the results of real experiments on Pb, Bi, and Rb’16. There is some 
structure in the generalized viscosity, which is revealed by both computer and 
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Table 6.1 Effective particle radius near the melting point 

Ar 2.24 2.9 
CH, 2.42 1.95 
Li 1.75 6.0 
Na 2.14 7.0 
K 2.65 5.4 
Rb 2.84 6.1 
c s  3.06 6.9 
Sn 1.89 21.0 

2.21 
2.00 
1.71 
1.41 
1.89 
1.91 
2.18 
1.32 

1.01 
1.21 
I .45 
1.52 
I .40 
1.49 
I .40 
I .43 

experiment, and for which there is no explanation at the present time. I t  has been 
demonstrated that i t  can have important consequences when r](q) is used to calculate 
the self-diffusion coefficient115. 

In Table 6.1, values of the effective particle radius are compared with the atomic 
sphere radius for a number of simple liquids near the melting point. Experimental 
values of D (Table 5.2) and r]  are used. 

The relatively small value of the ratio, a/R,  for Ar is the result of choosing 
D = 1.53 x lo- '  cm2 s- ' .  This was obtained by means of a capillary method39, but i t  
should be pointed out that other workers have deduced a higher value for a state near 
the melting point. Corbett and Wang4' obtain D z 2.0 x lo- '  cm2 s -  ', which makes 
the ratio 1.32. Even so, the liquid metals are clearly distinguishable; note that for rigid 
spheres, near crystallization, ( a / R )  z 1.27, when R = a/2. 

7 CONCLUSIONS 

Despite the long history of the subject, there is still a great deal to do in the area of 
atomic transport in liquids before we have a coherent picture of the way the transport 
mechanisms change with the thermodynamic parameters. We have, for example, 
pointed out the striking linear dependence of the fluidity of the liquid alkali metals on 
v\/.'f, along the saturated vapour pressure curve. The fluidity of liquid argon, on the 
other hand, does not have the same dependence on temperature. This may be due 
simply to the different way the volume changes with temperature in the two cases, but 
the reasons are not clear. On the positive side, the experimental evidence, generally. 
suggests that the concept of an activation energy is inappropriate and that a power 
law description of the data should be sought. (In this connection, we deplore the 
practice of reporting transport data by giving values for the parameters in an 
Arrhenius fit -tabulated results should always be given.) Because of experimental 
difficulties, self-diffusion data is rather sparse and there seems to be no consensus of 
the way D varies with T. For argon, along the saturated vapour pressure curve the 
available evidence suggests a linear dependence on T. This can be said also of some 
liquid metal data. For metals particularly more extensive results are essential before 
any definite conclusions can be reached. 
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Since diffusion experiments are difficult molecular dynamics calculations of the self- 
diffusion coefficient in liquid metal-like systems are important, provided that rhey are 
carried out in a systeinatic way. More computer experiments along the saturated 
vapour pressure line, or alternatively along isochores and/or isotherms will be 
particularly valuable. 

Although a theoretical framework is in place, and our knowledge of microdynamics 
in liquids has improved greatly over the last two decades, we still have to make further 
progress towards an understanding of the transport mechanisms and the way they 
depend on the interatomic forces. A convincing prediction of transport coefficients 
over wide ranges of temperature and density has still to be achieved. Mode-coupling 
theory offers hope of progress, although it has to be appreciated that the minimum 
requirement, as input data, is a knowledge of the structure of the liquid at each state 
point of interest. As an alternative to this difficult program, the rigid sphere fluid is 
exploited as a reference system (in much the same way as for the thermodynamics) 
from which to predict or correlate transport data in liquids. The problem here is to 
select an effective sphere diameter, and different ways of doing this have been 
discussed. The approach can be a useful way of correlating transport data when used 
in a systematic fashion9'. 

A frequently used relationship in liquids (and supported by rigid sphere data) is the 
Stokes-Einstein equation connecting D and q, although its original derivation gives 
no justification for its application in simple liquids. The introduction of a microscopic 
velocity field, to evaluate the velocity autocorrelation function, has thrown some light 
on the relationship. Not surprisingly within a microscopic framework a generalized 
transport coefficient, q(q), appears in the theory, rather than a hydrodynamic 
coefficient. Nevertheless, the form of the equation remains intact, an effective particle 
radius being defined with in terms of q(q). 

References 

I .  J. P. Hansen and 1. R .  McDonald, Theory ofSimple Liquids, 2nd. edn. (Academic Press, New York, 
1986). 

2. M .  Ginoza and N. H. March. Pkys. Chem. Liq., 15, 75 (1985). 
3. J. Anderson and K. Saddington, J .  Clrem. Soc., 152, 381 (1949). 
4. J .  Crank, The Mathemarics of Diffusion, 2nd. edn. (Clarendon Press, Oxford. 1975). 
5. J.  H .  Wang, J .  Am. Chem. Soc., 73, 510. 4181 (1952). 
6. See for example, H.  J .  V. Tyrrell and K .  R .  Harris, Difusion in Liquids. (Butterworth and Co. Ltd, 

7. M. W. Ozelton and R.  A. Swalin, Phil. Mag.,  18, 441 (1968). 
8. A. Lodding. S .  Larsson, L. Broman and C. Roxbergh, 2. Narurf: A 25, 1472 (1970). 
9. D. A. Rigney, in "Liquid Metals, 1976". ( R .  Evans and D.  A. Greenwood eds.) Institute of Physics 

1984). 

(Bristol. 1977) p. 619. 
10. T. Persson, P. E. Ericksson and L. Lindstrom, J .  Physique Suppl., 48, C8 374 (1980). 
11. J. S. Murday and R.  M. Cotts, J .  Chem. Phys., 48,4938 (1968). 
12. K. E. Larsson, Phys. Chem. Liq., 12, 273 (1982). 
13. E. Donth and W. Ulrici, Exptl .  Tech. Physik, 13, 175 (1965). 
14. L. Bewilogua and T. Yoshimura, J .  Low Temp. Phys., 8,255 (1972). 
15. A. Uhlir. J .  Chem. Phys., 20, 463 (1952). 
16. L. D. lkenberry and S.  A. Rice. J .  Chem. Phys., 39, 1561 (1963); B. J.  Bailey and K. Kellner, Physica, 39, 

444 (1968): and references therein. 
17. N. S. Rudenko and L. W. Schubnikov, Physik. 2. Sowjetunion, 6,  470 (1934). 
18. J. P. Boon. J. C. Legros and G .  Thomaes, Physica, 32, 1234 (1966). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
4
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



ATOMIC TRANSPORT IN LIQUIDS 237 

19. J. Hellernans. H.  Zink and 0. Van Paernel, Physica, 46, 395 (1970. 
20. P. S. Van der Gulik and N. J.  Trappeniers, Physica, 135A, 1 (1986). 
21. W. M. Haynes, Physica, 67. 440 (1973); and references therein. 
22. L. J. Wittenberg, D. Ofte and C. F. Curtiss, J .  Chem. Phys., 48, 3253 (1968). 
23. E. E. Shipil’rain, K. A. Yakirnovich, V. A. Fomin, S. N. Skovorodjko and M. S. Mozgovoi, Handbook 

of Thermodynamic and Transport Properties of Alkali Metals, (R. W. Ohse ed.) (Blackwell Scientific 
Publications, Oxford, 1985) p. 753. 

24. R. A. Fleury and J. P. Boon, Phys. Rev., 186, 244 (1969). 
25. D. G.  Naugle, J. H. Lunsford and J. R. Singer, J .  Chem. Phys., 45, 4669 (1966). 
26. S. V. Letcher and R. T. Beyer, J .  Acoust. Soc. Am., 35, 1571 (l963), and references therein; K. G. Plass, 

27. R. T. Beyer. Handbook of Thermodynamic and Transport Properties of Alkali Metals, (R. W. Ohse ed.) 

28. K. C. Sharrna, Phys. Rev.. 174, 309 (1968). 
29. E. N. da C. Andrade, Phil. Mag..  17. 698 (1934). 
30. P. Taborek. R. N. Kleirnan and D. J. Bishop, Phys. Reo. B, 34, 1835 (1986). 
31. A. J. Batschinski, Z .  Physik. Chem.. 84, 643 (1913). 
32. J. H. Hildebrand. Viscosity and Diflusii,ity, (Wiley, New York, 1976). 
33. J. J .  Van Loef, Physica, 1248, 305 (1984). 
34. J. J .  Van Loef, Physica, 75, 115 (1974). 
35. S. J. Larsson, C. Roxbergh and A. Lodding. Phys. Chem. Liq.. 3, 137 (1972). 
36. N. H. Nachtrieb, Properties of Liquid Metals. (P. A. Adarns, H. A. Davies and S. G .  Epstein eds.) 

37. R.  E. Meyer and N. H. Nachtrieb, J .  Chem. Phys., 23, 1851 (1955). 
38. J. Naghizadeh and S. A. Rice, J .  Chem. Phys., 36, 2710 (1962). 
39. G .  Cini-Castagnoli and F. P. Ricci. Nuorio Cimento, 15, 795 (1960). 
40. J .  W. Corbett and J .  H. Wang, J .  Chem. Phys., 25,422 (1956). 
41. S. L. Ruby, J .  C. Love, P. A. Flinn and B. J.  Zabransky, Appl. Phys. Lett., 27, 320 (1975). 
42. R.  Zwanzig, in Lectures in Theoretical Physics vol. 11 1 (Wiley, New York, 1961) p. 135; H. Mori, Prog. 

43. See. e.g. Statistical Mechanics, Part B:  Time-dependent Processes, (B. J. Berm ed.) (Plenum, New York. 

44. M. S. Green, J .  Chem. Phys., 22, 398 (1954) and Phys. Rev., 119, 829 (1960); R. Kubo, J .  Phys. SOC. 

45. R. Zwanzig, Ann. Rev. Phys. Chem.. 16, p. 92 (1965). 
46. A. Z. Akcasu and E. Daniels, Phys. Rer. A ,  2, 962 (1970). 
47. P. Schofield in The Physics of Simple Liquids, (H. R.  V. Ternperley, J. S. Rowlinson and G. S. 

48. R. D. Mountain. Adr. Mol.  Relax. Processes. 9, 225 (1976). 
49. D. J. Evans. Phys. Rer. A .  23, 2622 (1981). 
50. B. J .  Alder, D. M. Gass and T. E. Wainwright, J .  Chem. Phys. 53, 3813 (1970). 
51.  B. J.  Alder and T. E. Wainwright, Phys. Rev. Letters, 18, 988 (1967). 
52. J. J. Erpenbeck and W. W. Wood, J .  Stat. Phys., 24,455 (1981). 
53. A. Rahrnan. Phys. Re[, . .  136. 405 (1964). 
54. D. Levesque and L. Verlet, Phys. Rev. A, 2, 2514 (1970). 
55. M. Tanaka, J .  P h y . ~  F .  10, 2581 (1980). 
56. D. M. Heyes. J .  Chem. Soc. Faraday Trans., 79. 1741 (1983). 
57. D. Levesque. L. Verlet and J. Kurkijarvi, Phys. Rec., A, 7 1690 (1973). 
58. M. Schoen and C. Hoheisel, Mol. Phys., 56,653 (1985). 
59. D. Lewsque and L. Verlet. Mol. Phys.. 61, 143 (1987). 
60. C. Hoheisel, R.  Vogelsang and M. Schoen, J .  Chem. Phys., 87. 7195 (1987). 
61. R. Vogelsang. C. Hoheisel and G .  Ciccotti. J .  Chem. Phys., 86, 6371 (1987). 
62. R. Vogelsang and C. Hoheisel, Phys. Chem. Liq., 18, 141 (1988). 
63. L. M. Berezhkovsky. A.  N. Drozdov, V. Yu. Zitserrnan, A. N. Lagar’kov and S. A. Tiger, J .  Phys. F ,  14, 

64. W. A. Harrison Pseudopotentials in the Theory of Metals. (Benjamin, New York, 1966). 
65. R.  Kurnaravadivel, J .  Phys. F ,  13, 1607 (1983). 
66. N. W. Ashcroft, Phys. Lett., 23. 48 (1966). 
67. U. Balucani, R. Vallauri and T. Gaskell. Phys. Reo. A ,  37, 3386 (1988); R. Vallauri (unpublished 

Acustica. 13, 240 (1963). 

(Blackwell Scientific Publications, Oxford, 1985) p. 525. 

(Taylor and Francis Ltd., London, 1967) p. 309. 

Theor. Phys., 33, 423 (1 965). 

1977) p. 233. 

Japan. 12, 570 (1957); E. Helfand, Phys. Rev., 119, 1 (1960). 

Rushbrooke, eds) (North-Holland, Amsterdam, 1968) chap. 13. 

23 15 ( 1984). 

results). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
4
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



238 T. GASKELL, U. BALUCANI AND R. VALLAURI 

68. Landolt-Bornstein. Zahlenwerte und Funktionen, 5 Teil (Springer, Berlin, 1969). 
69. D. L. Price. K. S. Singwi and M. P. Tosi, Phys. Rev. B, 2, 2983 (1970). 
70. W. T. Ashurst and W. G. Hoover, Phys. Rev. A, 11. 658 (1975). 
71. G. Ciccotti and A. Tenenbaum, J .  Stat.  Phys., 23, 767 (1980); A. Tenenbaum, G. Ciccotti and R. 

Gallico, Phys. Rev. A, 25, 2778 (1982); C. Trozzi and G. Ciccotti, Phys. Rev. A. 29, 916 (1984). 
72. M. Mareschal and E. Kestemont, Phys. Rev. A, 30, 1158 (1984). 
73. D. J. Evans, W. G. Hoover, B. H. Failor, B. Moran and A. J. C. Ladd, Phys. Rev., A, 28, 1016 (1983). 
74. W. G. Hoover, D. J .  Evans, R. B. Hickman, A. J.  C. Ladd, W. T. Ashurst and B. Moran, Phys. Rev. A, 

75. D. J. Evans and G. P. Morris, Phys. Rev. A, 30, 1528 (1984). 
76. A. W. Lees and S. F. Edwards, J .  Phys.  C, 5, 1291 (1972). 
77. D. J. Evans, Phys. Lett.. A91, 457 (1982); M. J. Gillan and M. Dixon, J. Phys. C16, 869 (1983). 
78. D. J. Evans, in Molecular Dynamics Simulation oJStarisrical Mechanical Systems, (G. Cicotti and W. G .  

79. D. J. Evans, Phys. Letr. A. 74, 229 (1979). 
80. P. T. Cummings and C. P. Morriss, J .  Phys.  F, 17, 593 (1987); ibidem, 18, 1439 (1988). 
81. G. Ciccotti, G. V. Paolini, J. P. Ryckaert and A. Bellemans, Phys. Rev. Lett., 60, 128 (1988). 
82. C. Massobrio and G. Ciccotti, Phys. Rev. A, 30, 3191 (1984); G. V. Paolini, G. Ciccotti and C. 

83. D. M. Heyes, Phys. Rev. B, 37, 5677 (1988). 
84. N. W. Ashcroft and J. Leckner, Phys. Rev., 145, 83 (1966); J. A. Barker and D. Henderson, J .  Chem. 

Phys. .  47, 2856, 4714 (1967); L. Verlet. Phys. Rev., 165, 201 (1968). 
85. A. A. Clifford and E. Dickinson, Mol. Phys., 34, 875 (1977). 
86. J. P. Boon and S .  Yip, Molecular Hydrodynamics (McGraw-Hill. 1980). 
87. P. Schofield in Molecular Motions in Liquids, (J. Lascombe, ed) (D. Reidel, Dordrecht, 1974). 
88. S. Chapman and T. G. Cowling, T h e  Mathematical Theory of Non-Uniform Gases (Cambridge 

University Press. 1970); P. Resibois and De Leener, Classical Kinetic Theory 01’ Fluids (John Wiley 
and Sons, New York, 1977). 

28. 1016 (1983). 

Hoover, eds) (North Holland, Amsterdam, 1986). 

Massobrio, Phys. Rev. A, 34, 1355, (1986). 

89. P. Resibois. J. Star, Phys., 13, 393 (1975). 
90. R. J. Speedy, Mol. Phys., 62, 509 (1987). 
91. E. Leutheusser. J. Phys. C. 15, 2801 and 2827 (1982). 
92. P. M. Furtado, G. F. Mazenko and S .  Yip, Phys. Reu. A, 14, 1653 (1976). 
93. W. Sung and G. Stell, J .  Chem. Phys., 80, 3350 and 3367 (1984). 
94. J. H. Dymond. J .  Chem. Phys., 60, 969 (1972) and Physica, 75, 100 (1974). 
95. A. F. Collings and E. McLaughlin, Trans. Faraday Soc., 67, 340 (1971). 
96. M. A. McCool and L. A. Wooll J .  Chem. Soc. Trans. Faraday I ,  340 (1971). 
97. J. H. Dymond and T. A. Brawn. Proc. 7th Symp. Thermophys. Prop. Amer. SOC. Mech. Engnrs.. (New 

98. P. Protopapas. H. C. Andersen and N. A. D. Parlee, J .  Chem. Phys. .  59, I5  (1973). 
99. P. Protopapas. Master’s Thesis in Metallurgy, Dept. Mineral Eng., Stanford University, 1972. 

York) 660 (1977). 

100. P. Ascarelli and A. Paskin. Phys. Rer..  165. 222 (1968). 
101. T. Keyes. Starisric~ul Mechanics, Purr B :  Time-Dependent Processes. (B. J. Berne. ed), (Plenum, New 

102. A. Sjolander, Amorphous and Liquid Marerials. ( E .  Luscher, G. Fritsch and G. Jacucci. eds), (Martinus 

103. T. Munakata and A. Igarashi. Proy. Theor.  Phys.. 60.45 (1978). 
104. D. Levesque and W. T. Ashurst, Phys. Reo. Lett.. 33, 277 (1974). 
105. Ch. Morkel. Ch. Gronemeyer and W. Glaser, Liquid and Amorphous Metals,  (W. Glaser. F. Hensel and 

E. Luscher. eds) (R. Oldenbourg Verlag, Miinchen. 1987) p. 357. 
106. U. Balucani, R.  Vallauri and T. Gaskell, Phys. Reo. A ,  37, 3386 (1988). 
107. T. Geszti. J .  Phjs .  C ,  16, 5805 (1983); U. Bengtzelius, W. Gotze and A. Sjolander, J .  Phys.  C ,  17, 5915 

108. J.  Bosse, W. Gotze and M. Lucke, Phys. Rec. A ,  17,434 and 447 (1978): ibidem. 18. 1176 (1978); J. 

109. L. Sjogren and A. Sjolander. J .  Phys. C, 12,4369 (1979); L. Sjogren, Phys. Rec. A, 22, 2866 and 2883 

110. T. Gaskell and S. Miller, J .  Phys. C ,  11. 3749 (1978). 
I 1  I .  T. Gaskell and S .  Miller, J .  Phys. C, 11. 4839 (1978); P. E. Mason and T. Gaskell. Mol. Phys. ,  41. 529 

I 12. U. Balucani. R .  Vallauri, T. Gaskell and M. Gori, J .  Phys. C, 18, 3133 (1985). 

York. 1977) p. 259: G. F. Mazenko and S. Yip, ibidem, p. 181. 

Nijhof. 1987) p. 239. 

(1984). 

Bosse. W. Gotze and A. Zippelius, ibidem, 18. 1214 (1978). 

( 1980). 

(1980); T. Gaskell. J .  Phys. C, 16. 381 (1986). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
4
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



ATOMIC TRANSPORT IN LIQUIDS 

113. W. E. Alley and B. J .  Alder, Phys. Reo. A ,  27, 3158 (1983). 
114. T. Gaskell. U. Balucani, M. Gori and R .  Vallauri, Phys. Scripta, 35, 37 (1987). 
115. U. Balucani, R.  Vallauri and T. Gaskell, Phys. Reo. A, 35,4263 (1987). 
116. K .  E. Larsson and W. Gudowski, Phys. Rev. A,  33, 1968 (1986). 

239 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
4
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1


